Robust generalized canonical correlation analysis

被引:4
作者
Yan, He [1 ]
Cheng, Li [2 ]
Ye, Qiaolin [3 ]
Yu, Dong-Jun [1 ]
Qi, Yong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Xiaolingwei 200, Nanjing 210094, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Outliers and noise; p-order of Frobenius norm; Robust RGCCA; Squared Frobenius norm; FORMULATION;
D O I
10.1007/s10489-023-04666-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized canonical correlation analysis (GCCA) has been widely used for classification and regression problems. The key idea of GCCA is to map the data from different views into a common space with the minimum reconstruction error. However, GCCA employs the squared Frobenius norm as a distance metric to find a latent correlated space without a specific strategy to cope with outliers, thus misguiding the GCCA's training task in real-world applications and leading to suboptimal performance. This inspires us to propose a novel robust formulation for GCCA, namely, GCCA with the p-order (0
引用
收藏
页码:21140 / 21155
页数:16
相关论文
共 65 条
[41]   Generalized Canonical Correlation Analysis: A Subspace Intersection Approach [J].
Sorensen, Mikael ;
Kanatsoulis, Charilaos, I ;
Sidiropoulos, Nicholas D. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 :2452-2467
[42]   Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis [J].
Sun, Liang ;
Ji, Shuiwang ;
Ye, Jieping .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) :194-U204
[43]   Multiview Uncorrelated Discriminant Analysis [J].
Sun, Shiliang ;
Xie, Xijiong ;
Yang, Mo .
IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) :3272-3284
[44]   Kernel Generalized Canonical Correlation Analysis [J].
Tenenhaus, Arthur ;
Philippe, Cathy ;
Frouin, Vincent .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 :114-131
[45]   Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis [J].
Tenenhaus, Arthur ;
Tenenhaus, Michel .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 238 (02) :391-403
[46]   Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods [J].
Tenenhaus, Michel ;
Tenenhaus, Arthur ;
Groenen, Patrick J. F. .
PSYCHOMETRIKA, 2017, 82 (03) :737-777
[47]   Robust DLPP With Nongreedy l1-Norm Minimization and Maximization [J].
Wang, Qianqian ;
Gao, Quanxue ;
Xie, Deyan ;
Gao, Xinbo ;
Wang, Yong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (03) :738-743
[48]  
Wang Weiran., 2015, Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. ICML'15, P1083
[49]  
Wang YB, 2023, DISASTER MED PUBLIC, V16, P2492, DOI [10.1017/dmp.2021.149, 10.1145/3481056.3481108, 10.1145/3448340.3448341]
[50]   Deep Tensor CCA for Multi-View Learning [J].
Wong, Hok Shing ;
Wang, Li ;
Chan, Raymond ;
Zeng, Tieyong .
IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) :1664-1677