Robust generalized canonical correlation analysis

被引:4
作者
Yan, He [1 ]
Cheng, Li [2 ]
Ye, Qiaolin [3 ]
Yu, Dong-Jun [1 ]
Qi, Yong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Xiaolingwei 200, Nanjing 210094, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
[3] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Outliers and noise; p-order of Frobenius norm; Robust RGCCA; Squared Frobenius norm; FORMULATION;
D O I
10.1007/s10489-023-04666-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized canonical correlation analysis (GCCA) has been widely used for classification and regression problems. The key idea of GCCA is to map the data from different views into a common space with the minimum reconstruction error. However, GCCA employs the squared Frobenius norm as a distance metric to find a latent correlated space without a specific strategy to cope with outliers, thus misguiding the GCCA's training task in real-world applications and leading to suboptimal performance. This inspires us to propose a novel robust formulation for GCCA, namely, GCCA with the p-order (0
引用
收藏
页码:21140 / 21155
页数:16
相关论文
共 65 条
  • [1] Andrew R., 2013, INT C MACH LEARN, P1247
  • [2] Carroll JD., 1968, P AM PSYCHOL ASS, P227, DOI DOI 10.1037/E473742008-115
  • [3] A Single-Side Neural Network-Aided Canonical Correlation Analysis With Applications to Fault Diagnosis
    Chen, Hongtian
    Chen, Zhiwen
    Chai, Zheng
    Jiang, Bin
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 9454 - 9466
  • [4] Canonical Correlation Analysis of Datasets With a Common Source Graph
    Chen, Jia
    Wang, Gang
    Shen, Yanning
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (16) : 4398 - 4408
  • [5] K-Means Clustering-Based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition in Human-Robot Interaction
    Chen, Luefeng
    Wang, Kuanlin
    Li, Min
    Wu, Min
    Pedrycz, Witold
    Hirota, Kaoru
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (01) : 1016 - 1024
  • [6] A Comparative Study of Deep Neural Network-Aided Canonical Correlation Analysis-Based Process Monitoring and Fault Detection Methods
    Chen, Zhiwen
    Liang, Ketian
    Ding, Steven X.
    Yang, Chao
    Peng, Tao
    Yuan, Xiaofeng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6158 - 6172
  • [7] Sparse Canonical Correlation Analysis: New Formulation and Algorithm
    Chu, Delin
    Liao, Li-Zhi
    Ng, Michael K.
    Zhang, Xiaowei
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (12) : 3050 - 3065
  • [8] Information Fusion for Human Action Recognition via Biset/Multiset Globality Locality Preserving Canonical Correlation Analysis
    Elmadany, Nour El Din
    He, Yifeng
    Guan, Ling
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5275 - 5287
  • [9] Learning Robust Discriminant Subspace Based on Joint L2, p- and L2,s-Norm Distance Metrics
    Fu, Liyong
    Li, Zechao
    Ye, Qiaolin
    Yin, Hang
    Liu, Qingwang
    Chen, Xiaobo
    Fan, Xijian
    Yang, Wankou
    Yang, Guowei
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 130 - 144
  • [10] Efficient and Distributed Generalized Canonical Correlation Analysis for Big Multiview Data
    Fu, Xiao
    Huang, Kejun
    Papalexakis, Evangelos E.
    Song, Hyun Ah
    Talukdar, Partha
    Sidiropoulos, Nicholas D.
    Faloutsos, Christos
    Mitchell, Tom
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (12) : 2304 - 2318