Unconditional Superconvergence Analysis of Energy Conserving Finite Element Methods for the Nonlinear Coupled Klein-Gordon Equations

被引:3
作者
Cui, Ming [1 ]
Li, Yanfei [1 ]
Yao, Changhui [2 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 1000124, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Energy conserving; the nonlinear coupled Klein-Gordon equations; unconditional superconvergence result; postprocessing interpolation; finite element method; WAVE-PROPAGATION; CONVERGENCE; SCHEME; APPROXIMATION; MODEL; TANH; FLOW; FEM;
D O I
10.4208/aamm.OA-2021-0261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the energy conserving numerical scheme for cou-pled nonlinear Klein-Gordon equations. We propose energy conserving finite element method and get the unconditional superconvergence result O(h2+Delta t2) by using the er-ror splitting technique and postprocessing interpolation. Numerical experiments are carried out to support our theoretical results.
引用
收藏
页码:602 / 622
页数:21
相关论文
共 48 条
[21]  
Kang T, 2015, INT J NUMER ANAL MOD, V12, P636
[22]   Global attraction to solitary waves for Klein-Gordon equation with mean field interaction [J].
Komech, Alexander ;
Komech, Andrew .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :855-868
[23]  
Kontorova T. A., 1938, ZH EKSP TEOR FIZ, V8, P1340
[24]   Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation [J].
Lakestani, Mehrdad ;
Dehghan, Mehdi .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (08) :1392-1401
[25]   UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF A CRANK-NICOLSON GALERKIN METHOD FOR THE NONLINEAR THERMISTOR EQUATIONS [J].
Li, Buyang ;
Gao, Huadong ;
Sun, Weiwei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) :933-954
[26]   UNCONDITIONAL CONVERGENCE AND OPTIMAL ERROR ESTIMATES OF A GALERKIN-MIXED FEM FOR INCOMPRESSIBLE MISCIBLE FLOW IN POROUS MEDIA [J].
Li, Buyang ;
Sun, Weiwei .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) :1959-1977
[27]  
Li BY, 2013, INT J NUMER ANAL MOD, V10, P622
[28]   FINITE-DIFFERENCE CALCULUS INVARIANT STRUCTURE OF A CLASS OF ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION [J].
LI, S ;
VUQUOC, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1839-1875
[29]  
Lin Q., 1996, The Construction and Analysis of High Efficiency Finite Element Methods
[30]   Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations [J].
Qiao, Zhonghua ;
Yao, Changhui ;
Jia, Shanghui .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) :1-19