Balancing Numbers as Sum of Same Power of Consecutive Balancing Numbers

被引:1
作者
Nansoko, Souleymane [1 ]
Tchammou, Euloge [1 ]
Togbe, Alain [2 ]
机构
[1] Inst Math & Sci Phys, Dangbo, Benin
[2] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 S,US 421, Westville, IN 46391 USA
关键词
Balancing numbers; Pell numbers; Linear form in logarithms; Reduction method; LOGARITHMS; FIBONACCI;
D O I
10.1007/s10013-022-00573-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all the balancing numbers which are sum of same power of consecutive balancing numbers. For this, we find all the solutions of the Diophantine equation B-n(x) + B-n+1(x) + ... + B-n+k-1(x) = B-m in positive integers (m, n, k, x), where B-i is the i th term of the n n balancing sequence.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 13 条
[1]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[2]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[3]   Coincidences in generalized Fibonacci sequences [J].
Bravo, Jhon J. ;
Luca, Florian .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :2121-2137
[4]   Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
ANNALS OF MATHEMATICS, 2006, 163 (03) :969-1018
[5]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[6]  
Khinchin A. Ya, 1963, CONTINUED FRACTIONS
[7]   Linear forms in two logarithms and interpolation determinants [J].
Laurent, M ;
Mignotte, M ;
Nesterenko, Y .
JOURNAL OF NUMBER THEORY, 1995, 55 (02) :285-321
[8]   ON THE EXPONENTIAL DIOPHANTINE EQUATION Pnx + Pn+1x + ... + Pxn+k-1 = Pm [J].
Luca, Florian ;
Tchammou, Euloge ;
Togbe, Alain .
MATHEMATICA SLOVACA, 2020, 70 (06) :1333-1348
[9]   An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II [J].
Matveev, EM .
IZVESTIYA MATHEMATICS, 2000, 64 (06) :1217-1269
[10]  
PETHO A, 1992, COLLOQ MATH, V60, P561