Biochar application for the remediation of soil contaminated with potentially toxic elements: Current situation and challenges

被引:14
|
作者
Wu, Yi [1 ,2 ,3 ]
Yan, Yuhang [1 ,2 ,3 ]
Wang, Zongwei [1 ,2 ,3 ]
Tan, Zhongxin [1 ,2 ,3 ]
Zhou, Tuo [4 ]
机构
[1] Huazhong Agr Univ, Coll Resources & Environm, Hubei Key Lab Soil Environm & Pollut Remediat, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Coll Resources & Environm, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Coll Resources & Environm, Minist Agr & Rural Affairs, Wuhan 430070, Peoples R China
[4] Tsinghua Univ, Dept Energy & Power Engn, China State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
Biochar-based material; Interaction mechanisms; Risk; In -situ removal; Systemic remediation engineering; POLLUTED SOIL; HEAVY-METALS; BLACK CARBON; RICE STRAW; BIOAVAILABILITY; MOBILITY; LEAD; IRON; IMMOBILIZATION; REDUCTION;
D O I
10.1016/j.jenvman.2023.119775
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, biochar has garnered extensive attention in the remediation of soils contaminated with potentially toxic elements (PTEs) owing to its exceptional adsorption properties and straightforward operation. Most researchers have primarily concentrated on the effects, mechanisms, impact factors, and risks of biochar in remediation of PTEs. However, concerns about the long-term safety and impact of biochar have restricted its application. This review aims to establish a basis for the large-scale popularization of biochar for remediating PTEs-contaminated soil based on a review of interactive mechanisms between soil, PTEs and biochar, as well as the current situation of biochar for remediation in PTEs scenarios. Biochar can directly interact with PTEs or indirectly with soil components, influencing the bioavailability, mobility, and toxicity of PTEs. The efficacy of biochar in remediation varies depending on biomass feedstock, pyrolysis temperature, type of PTEs, and application rate. Compared to pristine biochar, modified biochar offers feasible solutions for tailoring specialized biochar suited to specific PTEs-contaminated soil. Main challenges limiting the applications of biochar are overdose and potential risks. The used biochar is separated from the soil that not only actually removes PTEs, but also mitigates the negative long-term effects of biochar. A sustainable remediation technology is advocated that enables the recovery and regeneration (95.0-95.6%) of biochar from the soil and the removal of PTEs (the removal rate of Cd is more than 20%) from the soil. Finally, future research directions are suggested to augment the environmental safety of biochar and promote its wider application.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Assessment and Remediation of Soils Contaminated by Potentially Toxic Elements (PTE)
    Spagnuolo, Matteo
    Adamo, Paola
    Garau, Giovanni
    SOIL SYSTEMS, 2022, 6 (02)
  • [2] Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements
    Manzano, Rebeca
    Diquattro, Stefania
    Roggero, Pier Paolo
    Pinna, Maria Vittoria
    Garau, Giovanni
    Castaldi, Paola
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 739
  • [3] Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements
    Bilias, Fotis
    Nikoli, Thomai
    Kalderis, Dimitrios
    Gasparatos, Dionisios
    TOXICS, 2021, 9 (08)
  • [4] Characteristics of biochar and its application in remediation of contaminated soil
    Tang, Jingchun
    Zhu, Wenying
    Kookana, Rai
    Katayama, Arata
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2013, 116 (06) : 653 - 659
  • [5] Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review
    Zhang, Xu
    Zou, Guoyan
    Chu, Huaqiang
    Shen, Zheng
    Zhang, Yalei
    Abbas, Mohamed H. H.
    Albogami, Bader Z.
    Zhou, Li
    Abdelhafez, Ahmed A.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [6] Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil
    Qiao, Yuhui
    Crowley, David
    Wang, Kun
    Zhang, Huiqi
    Li, Huafen
    ENVIRONMENTAL POLLUTION, 2015, 206 : 636 - 643
  • [7] Effect of clay on the fractions of potentially toxic elements in contaminated soil
    Vejvodova, Katerina
    Drabek, Ondrej
    Ash, Christopher
    Tejnecky, Vaclav
    Nemecek, Karel
    Boruvka, Lubos
    SOIL AND WATER RESEARCH, 2021, 16 (01) : 1 - 10
  • [8] Biochar Addition Decreases the Mobility, Bioavailability, and Phytotoxicity of Potentially Toxic Elements in an Agricultural Contaminated Soil
    Abou Jaoude, Lena
    Nassif, Nadine
    Garau, Giovanni
    Darwish, Talal
    Castaldi, Paola
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2022, 53 (13) : 1655 - 1671
  • [9] Softwood-derived Biochar as a Green Material for the Recovery of Environmental Media Contaminated with Potentially Toxic Elements
    Pinna, Maria Vittoria
    Lauro, Gian Paolo
    Diquattro, Stefania
    Garau, Matteo
    Senette, Caterina
    Castaldi, Paola
    Garau, Giovanni
    WATER AIR AND SOIL POLLUTION, 2022, 233 (05)
  • [10] Assessment of remediation of soils, moderately contaminated by potentially toxic metals, using different forms of carbon (charcoal, biochar, activated carbon). Impacts on contamination, metals availability and soil indices
    Golia, Evangelia E.
    Aslanidis, Panagiotis-Stavros C.
    Papadimou, Sotiria G.
    Kantzou, Ourania-Despoina
    Chartodiplomenou, Maria-Anna
    Lakiotis, Kosmas
    Androudi, Maria
    Tsiropoulos, Nikolaos G.
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2022, 28