Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes

被引:56
作者
Han, Lishun [1 ,2 ,3 ]
Guo, Yiming [4 ]
Ning, Fanghua [4 ]
Liu, Xiaoyu [4 ]
Yi, Jin [4 ]
Luo, Qun [1 ,2 ,3 ]
Qu, Baihua [5 ,6 ]
Yue, Jili [5 ,6 ]
Lu, Yangfan [5 ,6 ]
Li, Qian [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab Adv Ferromet, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Coll Sci, Inst Sustainable Energy, Shanghai 20044, Peoples R China
[5] Chongqing Univ, Coll Mat Sci & Engn, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
[6] Chongqing Univ, Natl Key Lab Adv Casting Technol, Chongqing 400044, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
hydrogen evolution reaction; hydrophobic strategy; lotus effect; Zn anodes; Zn-ion batteries; ZINC-ION BATTERIES; SOLUTION-IMMERSION PROCESS; DENDRITE-FREE; LONG-LIFE; DEPOSITION; SURFACE; FABRICATION; CHALLENGES; ENERGY;
D O I
10.1002/adma.202308086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H2O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H2O adsorption energy on the Zn metal anode. In situ integrated Cu nanorods arrays and hydrophobic long-chain alkyl groups are constructed, which provide zincophilic ordered channels and hydrophobic property. Consequently, the SA-Cu@Zn anode exhibits long-term cycling stability over 2000 h and high average Coulombic efficiency (CE) of 99.83% at 1 mA cm-2 for 1 mAh cm-2, which improves the electrochemical performance of the Zn||V2O5 full cell. Density functional theory (DFT) calculations combined with water contact angle (CA) measurements demonstrate that the SA-Cu@Zn exhibits larger water CA and weaker H2O adsorption than Zn. Moreover, the presence of Cu ensures the selective adsorption of Zn on the SA-Cu@Zn anode, well explaining how the excellent reversibility is achieved. This work demonstrates the effectiveness of the lotus effect on controllable H2O adsorption and Zn deposition mechanism, offering a universal strategy for achieving stable ZIB anodes. Inspired by the lotus effect, a universal strategy is proposed for achieving stable Zn metal anodes. The effectiveness of the lotus effect on controllable H2O adsorption and Zn deposition mechanism is demonstrated by designing the metal-organometallic compound layer with zincophilic ordered channels and hydrophobic property, in which in situ integrated Cu nanorods arrays and hydrophobic groups are constructed.image
引用
收藏
页数:12
相关论文
共 65 条
[1]   Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies [J].
Bayaguud, Aruuhan ;
Fu, Yanpeng ;
Zhu, Changbao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (246-262) :246-262
[2]   Recent Progress in Layered Manganese and Vanadium Oxide Cathodes for Zn-Ion Batteries [J].
Bensalah, Nasr ;
De Luna, Yannis .
ENERGY TECHNOLOGY, 2021, 9 (05)
[3]   Anode corrosion in aqueous Zn metal batteries [J].
Cai, Zhao ;
Wang, Jindi ;
Sun, Yongming .
ESCIENCE, 2023, 3 (01)
[4]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[5]   Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Deng, Tao ;
Li, Qin ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (43) :19292-19296
[6]   A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions [J].
Chang, Haiqing ;
Liu, Baicang ;
Zhang, Zhewei ;
Pawar, Ritesh ;
Yan, Zhongsen ;
Crittenden, John C. ;
Vidic, Radisav D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (03) :1395-1418
[7]   Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode [J].
Chen, Aosai ;
Zhao, Chenyang ;
Guo, Zhikun ;
Lu, Xingyuan ;
Liu, Nannan ;
Zhang, Yu ;
Fan, Lishuang ;
Zhang, Naiqing .
ENERGY STORAGE MATERIALS, 2022, 44 :353-359
[8]   Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes [J].
Chen, Guoyuan ;
Sang, Zhiyuan ;
Cheng, Jianghui ;
Tan, Shandong ;
Yi, Zhehan ;
Zhang, Xueqi ;
Si, Wenping ;
Yin, Yuxin ;
Liang, Ji ;
Hou, Feng .
ENERGY STORAGE MATERIALS, 2022, 50 :589-597
[9]   Superhydrophobic Shape Memory Polymer Arrays with Switchable Isotropic/Anisotropic Wetting [J].
Cheng, Zhongjun ;
Zhang, Dongjie ;
Lv, Tong ;
Lai, Hua ;
Zhang, Enshuang ;
Kang, Hongjun ;
Wang, Yongzhen ;
Liu, Pengchang ;
Liu, Yuyan ;
Du, Yi ;
Dou, Shixue ;
Jiang, Lei .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (07)
[10]   In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes [J].
Chu, Yuzhu ;
Zhang, Shu ;
Wu, Shuang ;
Hu, Zhenglin ;
Cui, Guanglei ;
Luo, Jiayan .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3609-3620