Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data

被引:36
作者
Kim, Daniel [1 ,2 ,3 ]
Tran, Andy [1 ,3 ,4 ]
Kim, Hani Jieun [2 ,3 ]
Lin, Yingxin [1 ,3 ,4 ]
Yang, Jean Yee Hwa [1 ,3 ,4 ]
Yang, Pengyi [1 ,2 ,3 ,4 ]
机构
[1] Univ Sydney, Sch Math & Stat, Camperdown, NSW, Australia
[2] Univ Sydney, Childrens Med Res Inst, Computat Syst Biol Unit, Camperdown, NSW, Australia
[3] Univ Sydney, Sydney Precis Data Sci Ctr, Camperdown, NSW, Australia
[4] Univ Sydney, Charles Perkins Ctr, Camperdown, NSW, Australia
基金
英国医学研究理事会;
关键词
TRANSCRIPTION FACTORS; PAIRED EXPRESSION; CAUSAL INFERENCE; CHIP-SEQ; CHROMATIN; ASSOCIATION; STATISTICS; BINDING; RNA;
D O I
10.1038/s41540-023-00312-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inferring gene regulatory networks (GRNs) is a fundamental challenge in biology that aims to unravel the complex relationships between genes and their regulators. Deciphering these networks plays a critical role in understanding the underlying regulatory crosstalk that drives many cellular processes and diseases. Recent advances in sequencing technology have led to the development of state-of-the-art GRN inference methods that exploit matched single-cell multi-omic data. By employing diverse mathematical and statistical methodologies, these methods aim to reconstruct more comprehensive and precise gene regulatory networks. In this review, we give a brief overview on the statistical and methodological foundations commonly used in GRN inference methods. We then compare and contrast the latest state-of-the-art GRN inference methods for single-cell matched multi-omics data, and discuss their assumptions, limitations and opportunities. Finally, we discuss the challenges and future directions that hold promise for further advancements in this rapidly developing field.
引用
收藏
页数:13
相关论文
共 110 条
[91]  
Huynh-Thu VA, 2019, METHODS MOL BIOL, V1883, P1, DOI 10.1007/978-1-4939-8882-2_1
[92]   Recovering Gene Interactions from Single-Cell Data Using Data Diffusion [J].
van Dijk, David ;
Sharma, Roshan ;
Nainys, Juozas ;
Yim, Kristina ;
Kathail, Pooja ;
Carr, Ambrose J. ;
Burdziak, Cassandra ;
Moon, Kevin R. ;
Chaffer, Christine L. ;
Pattabiraman, Diwakar ;
Bierie, Brian ;
Mazutis, Linas ;
Wolf, Guy ;
Krishnaswamy, Smita ;
Pe'er, Dana .
CELL, 2018, 174 (03) :716-+
[93]   Prior specification in Bayesian statistics: Three cautionary tales [J].
Van Dongen, Stefan .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 242 (01) :90-100
[94]   Methods and applications for single-cell and spatial multi-omics [J].
Vandereyken, Katy ;
Sifrim, Alejandro ;
Thienpont, Bernard ;
Voet, Thierry .
NATURE REVIEWS GENETICS, 2023, 24 (08) :494-515
[95]   Single-cell reconstruction of the early maternal-fetal interface in humans [J].
Vento-Tormo, Roser ;
Efremova, Mirjana ;
Botting, Rachel A. ;
Turco, Margherita Y. ;
Vento-Termo, Miquel ;
Meyer, Kerstin B. ;
Park, Jong-Eun ;
Stephenson, Emily ;
Polanski, Krzysztof ;
Goncalves, Angela ;
Gardner, Lucy ;
Holmqvist, Staffan ;
Henriksson, Johan ;
Zou, Angela ;
Sharkey, Andrew M. ;
Millar, Ben ;
Innes, Barbara ;
Wood, Laura ;
Wilbrey-Clark, Anna ;
Payne, Rebecca P. ;
Ivarsson, Martin A. ;
Lisgo, Steve ;
Filby, Andrew ;
Rowitch, David H. ;
Bulmer, Judith N. ;
Wright, Gavin J. ;
Stubbington, Michael J. T. ;
Haniffa, Muzlifah ;
Moffett, Ashley ;
Teichmann, Sarah A. .
NATURE, 2018, 563 (7731) :347-+
[96]   Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes [J].
Wagner, A .
BIOINFORMATICS, 1999, 15 (10) :776-784
[97]   Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics [J].
Wang, Lingfei ;
Trasanidis, Nikolaos ;
Wu, Ting ;
Dong, Guanlan ;
Hu, Michael ;
Bauer, Daniel E. E. ;
Pinello, Luca .
NATURE METHODS, 2023, 20 (09) :1368-+
[98]   ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks [J].
Wang, Panwen ;
Qin, Jing ;
Qin, Yiming ;
Zhu, Yun ;
Wang, Lily Yan ;
Li, Mulin Jun ;
Zhang, Michael Q. ;
Wang, Junwen .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W264-W269
[99]   Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells [J].
Xie, Shiqi ;
Duan, Jialei ;
Li, Boxun ;
Zhou, Pei ;
Hon, Gary C. .
MOLECULAR CELL, 2017, 66 (02) :285-+
[100]   ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells [J].
Xu, Wei ;
Yang, Weilong ;
Zhang, Yunlong ;
Chen, Yawen ;
Hong, Ni ;
Zhang, Qian ;
Wang, Xuefei ;
Hu, Yukun ;
Song, Kun ;
Jin, Wenfei ;
Chen, Xi .
NATURE METHODS, 2022, 19 (10) :1243-+