MAXIMAL FIRST BETTI NUMBER RIGIDITY OF NONCOMPACT RCD(0,N) SPACES

被引:0
作者
Ye, Zhu [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; GEOMETRY;
D O I
10.1090/proc/16574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, d, m) be a noncompact RCD(0,N) space with N E N+ , suppm = M. We prove that if the first Betti number of M equals N - 1, then (M, d, m) is either a flat Riemannian N-manifold with a soul TN-1 or the metric product [0, oo) x TN-1, both with the measure a multiple of the N-dimensional Hausdorff measure itN, where TN-1 is a flat torus.
引用
收藏
页码:5403 / 5412
页数:10
相关论文
共 19 条