Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering

被引:67
作者
Qu, Junpeng [1 ]
Cao, Xianjun [1 ]
Gao, Li [1 ]
Li, Jiayi [1 ]
Li, Lu [1 ]
Xie, Yuhan [2 ]
Zhao, Yufei [1 ]
Zhang, Jinqiang [2 ,3 ]
Wu, Minghong [1 ]
Liu, Hao [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Broadway, Sydney, NSW 2007, Australia
[3] Univ Toronto, Dept Elect & Comp Engn, 35 St George St, Toronto, ON M5S 1A4, Canada
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Key steps in CO2RR-ethylene; Preferable reaction pathways; Mechanism understanding; Surface engineering strategies of Cu-based catalysts; METAL-ORGANIC FRAMEWORK; CO2; REDUCTION; PRODUCT SELECTIVITY; COPPER NANOCRYSTALS; OXIDATION-STATE; FREE-ENERGY; THEORETICAL INSIGHTS; AMBIENT-TEMPERATURE; C-2; PRODUCTS; AB-INITIO;
D O I
10.1007/s40820-023-01146-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C-C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C-C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C-1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.
引用
收藏
页数:34
相关论文
共 226 条
[91]   Facet-Selective Deposition of Ultrathin Al2O3 on Copper Nanocrystals for Highly Stable CO2 Electroreduction to Ethylene [J].
Li, Hui ;
Yu, Peiping ;
Lei, Renbo ;
Yang, Feipeng ;
Wen, Peng ;
Ma, Xiao ;
Zeng, Guosong ;
Guo, Jinghua ;
Toma, Francesca M. ;
Qiu, Yejun ;
Geyer, Scott M. ;
Wang, Xinwei ;
Cheng, Tao ;
Drisdell, Walter S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (47) :24838-24843
[92]   Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis [J].
Li, Jun ;
Ozden, Adnan ;
Wan, Mingyu ;
Hu, Yongfeng ;
Li, Fengwang ;
Wang, Yuhang ;
Zamani, Reza R. ;
Ren, Dan ;
Wang, Ziyun ;
Xu, Yi ;
Nam, Dae-Hyun ;
Wicks, Joshua ;
Chen, Bin ;
Wang, Xue ;
Luo, Mingchuan ;
Graetzel, Michael ;
Che, Fanglin ;
Sargent, Edward H. ;
Sinton, David .
NATURE COMMUNICATIONS, 2021, 12 (01)
[93]   Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction [J].
Li, Jun ;
Wang, Ziyun ;
McCallum, Christopher ;
Xu, Yi ;
Li, Fengwang ;
Wang, Yuhang ;
Gabardo, Christine M. ;
Cao-Thang Dinh ;
Zhuang, Tao-Tao ;
Wang, Liang ;
Howe, Jane Y. ;
Ren, Yang ;
Sargent, Edward H. ;
Sinton, David .
NATURE CATALYSIS, 2019, 2 (12) :1124-1131
[94]   Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters [J].
Li, Lin ;
Larsen, Ask H. ;
Romero, Nichols A. ;
Morozov, Vitali A. ;
Glinsvad, Christian ;
Abild-Pedersen, Frank ;
Greeley, Jeff ;
Jacobsen, Karsten W. ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (01) :222-226
[95]   Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene [J].
Li, Qing ;
Zhu, Wenlei ;
Fu, Jiaju ;
Zhang, Hongyi ;
Wu, Gang ;
Sun, Shouheng .
NANO ENERGY, 2016, 24 :1-9
[96]   MOF-based materials for photo- and electrocatalytic CO2 reduction [J].
Li, Xiaofang ;
Zhu, Qi-Long .
ENERGYCHEM, 2020, 2 (03)
[97]   Hetero-Interfaces on Cu Electrode for Enhanced Electrochemical Conversion of CO2 to Multi-Carbon Products [J].
Li, Xiaotong ;
Wang, Jianghao ;
Lv, Xiangzhou ;
Yang, Yue ;
Xu, Yifei ;
Liu, Qian ;
Wu, Hao Bin .
NANO-MICRO LETTERS, 2022, 14 (01)
[98]   Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes [J].
Li, Xiaotong ;
Liu, Qian ;
Wang, Jianghao ;
Meng, Dechao ;
Shu, Yijin ;
Lv, Xiangzhou ;
Zhao, Bo ;
Yang, Hao ;
Cheng, Tao ;
Gao, Qingsheng ;
Li, Linsen ;
Wu, Hao Bin .
CHEM, 2022, 8 (08) :2148-2162
[99]   Hydrophobic Copper Interfaces Boost Electroreduction of Carbon Dioxide to Ethylene in Water [J].
Liang, Hong-Qing ;
Zhao, Siqi ;
Hu, Xin-Ming ;
Ceccato, Marcel ;
Skrydstrup, Troels ;
Daasbjerg, Kim .
ACS CATALYSIS, 2021, 11 (02) :958-966
[100]   Vapor-Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickel-Coordinated Nitrogen-Doped Carbon [J].
Lin, Yi-Rung ;
Lee, Dong Un ;
Tan, Shunquan ;
Koshy, David M. ;
Lin, Tiras Y. ;
Wang, Lei ;
Corral, Daniel ;
Aviles Acosta, Jaime E. ;
Zamora Zeledon, Jose A. ;
Beck, Victor A. ;
Baker, Sarah E. ;
Duoss, Eric B. ;
Hahn, Christopher ;
Jaramillo, Thomas F. .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (28)