Mathematical analysis of a vaccination epidemic model with nonlocal diffusion

被引:16
作者
Bentout, Soufiane [1 ,2 ]
Djilali, Salih [1 ,3 ]
Kuniya, Toshikazu [4 ]
Wang, Jinliang [5 ]
机构
[1] Univ Tlemcen, Lab Anal Non Lineaire & Math Appl, Tilimsen, Algeria
[2] Ain Temouchent Univ, Dept Math & Informat, Belhadj Bouchaib, Ain Temouchent, Algeria
[3] Hassiba Benbouali Univ, Fac Exact & Comp Sci, Math Dept, Chlef, Algeria
[4] Kobe Univ, Grad Sch Syst Informat, 1-1 Rokkodai Cho,Nada Ku, Kobe 6578501, Japan
[5] Heilongjiang Univ, Sch Math Sci, Harbin, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
basic reproduction number; nonlocal diffusion; SVIR model; vaccination; ARBITRARILY DISTRIBUTED PERIODS; GLOBAL ASYMPTOTIC STABILITY; ENDEMIC MODELS; DYNAMICS; DISPERSAL; AGE;
D O I
10.1002/mma.9162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global dynamics of a susceptible-vaccinated-infected-recovered model that incorporates nonlocal diffusion. By identifying the basic reproduction number Script capital R0$$ {\mathrm{\mathcal{R}}}_0 $$ of the model, we obtain the following threshold-type results: (i) If Script capital R0<1$$ {\mathrm{\mathcal{R}}}_0, then the epidemic becomes extinct in the sense that the infection-free equilibrium is globally attractive; (ii) if Script capital R0>1$$ {\mathrm{\mathcal{R}}}_0>1 $$ and the diffusion coefficients are the same for all classes, then the epidemic persists in the sense that the system is uniformly persistent; and (iii) if Script capital R0>1$$ {\mathrm{\mathcal{R}}}_0>1 $$, the diffusion coefficients for susceptible, and the vaccinated classes are zero, then the system admits a unique endemic equilibrium, and the omega-limit set is included in the singleton of the endemic equilibrium. Our results show that Script capital R0$$ {\mathrm{\mathcal{R}}}_0 $$ is an essential value for determining global epidemic dynamics in our model.
引用
收藏
页码:10970 / 10994
页数:25
相关论文
共 50 条
  • [1] Global dynamics of an SIR epidemic model with nonlocal diffusion
    Kuniya, Toshikazu
    Wang, Jinliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 262 - 282
  • [2] Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion
    Hao Kang
    Shigui Ruan
    Journal of Mathematical Biology, 2021, 83
  • [3] Mathematical analysis on an age-structured SIS epidemic model with nonlocal diffusion
    Kang, Hao
    Ruan, Shigui
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 83 (01) : 5
  • [4] Global dynamics and threshold behavior of an SEIR epidemic model with nonlocal diffusion
    Dey, Subir
    Kar, Tapan Kumar
    Kuniya, Toshikazu
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 226 : 91 - 117
  • [5] Global proprieties of an SIR epidemic model with nonlocal diffusion and immigration
    Zeb, Anwar
    Djilali, Salih
    Saeed, Tareq
    Alhodaly, Mohammed Sh.
    Gul, Nadia
    RESULTS IN PHYSICS, 2022, 39
  • [6] Dynamics of a delayed nonlocal reaction-diffusion heroin epidemic model in a heterogenous environment
    Djilali, Salih
    Chen, Yuming
    Bentout, Soufiane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 273 - 307
  • [7] THE EFFECT OF NONLOCAL REACTION IN AN EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES
    Zhao, Meng
    Li, Wantong
    Du, Yihong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (09) : 4599 - 4620
  • [8] AN EPIDEMIC MODEL WITH NONLOCAL DIFFUSION ON NETWORKS
    Logak, Elisabeth
    Passat, Isabelle
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (04) : 693 - 719
  • [9] AN SIR EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES
    Yang, Guoying
    Wang, Mingxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, : 4221 - 4230
  • [10] A nonlocal diffusion SIR epidemic model with nonlocal incidence rate and free boundaries
    Zhou, Li
    Chen, Yujuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 16672 - 16684