Galois representations of superelliptic curves

被引:0
作者
Pacetti, Ariel [1 ]
Villanueva, Angel [2 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Nacl Cordoba, FAMAF CIEM, RA-5000 Cordoba, Argentina
关键词
Superelliptic Curves; Galois representations;
D O I
10.1017/S0017089522000386
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A superelliptic curve over a discrete valuation ring O of residual characteristic p is a curve given by an equation T : y(n) = f (x), with Disc(f) &NOTEQUexpressionL; 0. The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f (x) has all its roots in the fraction field of O and that p sic n. Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77-108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73-135.).
引用
收藏
页码:356 / 382
页数:27
相关论文
共 15 条
[1]  
Best A. J., 2020, ARXIV
[2]  
Bosch S., 1990, ERGEB MATH GRENZGEB, V21
[3]   Conductor and discriminant of Picard curves [J].
Bouw, Irene I. ;
Koutsianas, Angelos ;
Sijsling, Jeroen ;
Wewers, Stefan .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (01) :368-404
[4]   COMPUTING L-FUNCTIONS AND SEMISTABLE REDUCTION OF SUPERELLIPTIC CURVES [J].
Bouw, Irene I. ;
Wewers, Stefan .
GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (01) :77-108
[5]   ROOT NUMBERS, SELMER GROUPS, AND NON-COMMUTATIVE IWASAWA THEORY [J].
Coates, John ;
Fukaya, Takako ;
Kato, Kazuya ;
Sujatha, Ramdorai .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (01) :19-97
[6]  
Dokchitser T., 2022, ARXIV
[7]   MODELS OF CURVES OVER DISCRETE VALUATION RINGS [J].
Dokchitser, Tim .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (11) :2519-2574
[8]   TATE MODULE AND BAD REDUCTION [J].
Dokchitser, Tim ;
Dokchitser, Vladimir ;
Morgan, Adam .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) :1361-1372
[9]  
Dokchitser T, 2019, CONTEMP MATH, V724, P73, DOI 10.1090/conm/724/14586
[10]  
Grothendieck A., 1972, Lecture Notes in Mathematics, V288