Ti-6Al-4V powder reuse in laser powder bed fusion (L-PBF): The effect on porosity, microstructure, and mechanical behavior

被引:31
|
作者
Soltani-Tehrani, Arash [1 ,2 ]
Isaac, John P. [2 ]
Tippur, Hareesh, V [1 ,2 ]
Silva, Daniel F. [1 ,3 ]
Shao, Shuai [1 ,2 ]
Shamsaei, Nima [1 ,2 ]
机构
[1] Auburn Univ, Natl Ctr Addit Mfg Excellence NCAME, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[3] Auburn Univ, Dept Ind & Syst Engn, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Laser powder bed fusion (L-PBF; LB-PBF); Additive manufacturing (AM); Fatigue; Fracture; Part location; PARTS; QUALITY;
D O I
10.1016/j.ijfatigue.2022.107343
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work investigated the effects of powder reuse, and location dependency on the mechanical properties of plasma atomized Ti-6Al-4V Grade 5 parts manufactured via laser powder bed fusion (L-PBF). Reusing the powder enhanced powder flowability and packing state while increasing the oxygen. Fatigue performance improved with limited reuse for the specimens upstream of the shield gas and decreased at downstream locations due to large critical defects. Powder reuse increased tensile strength and the critical energy release rate under high strain-rate loading. The specimens in downstream locations suffered more from spattering, resulting in lower fatigue performance and tensile ductility.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Precipitation hardening of laser powder bed fusion Ti-6Al-4V
    Derimow, Nicholas
    Benzing, Jake T.
    Garcia, Jacob
    Levin, Zachary S.
    Lu, Ping
    Moser, Newell
    Beamer, Chad
    Delrio, Frank W.
    Hrabe, Nik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [22] Thermal Conductivity of Ti-6Al-4V in Laser Powder Bed Fusion
    Bartsch, Katharina
    Bossen, Bastian
    Chaudhary, Waqar
    Landry, Michael
    Herzog, Dirk
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
  • [23] Recent advance in laser powder bed fusion of Ti-6Al-4V alloys: microstructure, mechanical properties and machinability
    Ni, Chenbing
    Zhu, Junjie
    Zhang, Baoguo
    An, Kai
    Wang, Youqiang
    Liu, Dejian
    Lu, Wei
    Zhu, Lida
    Liu, Changfu
    VIRTUAL AND PHYSICAL PROTOTYPING, 2025, 20 (01)
  • [24] Investigation of fatigue behavior of laser powder bed fusion Ti-6Al-4V: Roles of heat treatment and microstructure
    Liu, Jianwen
    Zhang, Kai
    Liu, Jie
    Wang, Hao
    Yang, Yi
    Yan, Liangming
    Tian, Xinni
    Zhu, Yuman
    Huang, Aijun
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 176
  • [25] In-situ synchrotron X-ray diffraction investigation of martensite decomposition in Laser Powder Bed Fusion (L-PBF) processed Ti-6Al-4V
    Dhekne, Pushkar Prakash
    Bonisch, Matthias
    Seefeldt, Marc
    Vanmeensel, Kim
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 899
  • [26] Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion
    Cepeda-Jimenez, C. M.
    Potenza, F.
    Magalini, E.
    Luchin, V
    Molinari, A.
    Perez-Prado, M. T.
    MATERIALS CHARACTERIZATION, 2020, 163
  • [27] Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications
    Masoomi, Mohammad
    Thompson, Scott M.
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2017, 118 : 73 - 90
  • [28] Mechanical properties of Ti-6Al-4V thin walls fabricated by laser powder bed fusion
    Lee, Junghoon
    Hussain, Arif
    Ha, Jeonghong
    Kwon, Youngsam
    Kim, Rae Eon
    Kim, Hyoung Seop
    Kim, Dongsik
    ADDITIVE MANUFACTURING, 2024, 94
  • [29] Dynamic behavior and thermomechanical characterization of laser powder bed fusion and wrought Ti-6Al-4V
    Salehi, Seyyed-Danial
    Beal, Roger
    Kingstedt, Owen T.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 176
  • [30] Microstructure and Mechanical Property of MXene-Added Ti-6Al-4V Alloy Fabricated by Laser Powder Bed Fusion
    Zhang, Yu
    Dong, Mingqi
    Zhou, Weiwei
    Nomura, Naoyuki
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2025, 89 (03) : 161 - 167