Ti-6Al-4V powder reuse in laser powder bed fusion (L-PBF): The effect on porosity, microstructure, and mechanical behavior

被引:40
作者
Soltani-Tehrani, Arash [1 ,2 ]
Isaac, John P. [2 ]
Tippur, Hareesh, V [1 ,2 ]
Silva, Daniel F. [1 ,3 ]
Shao, Shuai [1 ,2 ]
Shamsaei, Nima [1 ,2 ]
机构
[1] Auburn Univ, Natl Ctr Addit Mfg Excellence NCAME, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[3] Auburn Univ, Dept Ind & Syst Engn, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
Laser powder bed fusion (L-PBF; LB-PBF); Additive manufacturing (AM); Fatigue; Fracture; Part location; PARTS; QUALITY;
D O I
10.1016/j.ijfatigue.2022.107343
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work investigated the effects of powder reuse, and location dependency on the mechanical properties of plasma atomized Ti-6Al-4V Grade 5 parts manufactured via laser powder bed fusion (L-PBF). Reusing the powder enhanced powder flowability and packing state while increasing the oxygen. Fatigue performance improved with limited reuse for the specimens upstream of the shield gas and decreased at downstream locations due to large critical defects. Powder reuse increased tensile strength and the critical energy release rate under high strain-rate loading. The specimens in downstream locations suffered more from spattering, resulting in lower fatigue performance and tensile ductility.
引用
收藏
页数:16
相关论文
共 82 条
[1]   Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel [J].
Ahmed, Farid ;
Ali, Usman ;
Sarker, Dyuti ;
Marzbanrad, Ehsan ;
Choi, Kaylie ;
Mahmoodkhani, Yahya ;
Toyserkani, Ehsan .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 278
[2]   Effect of powder reuse on mechanical properties of Ti-6Al-4V produced through selective laser melting [J].
Alamos, Fernando J. ;
Schiltz, Jessica ;
Kozlovsky, Kirsten ;
Attardo, Ross ;
Tomonto, Charles ;
Pelletiers, Tom ;
Schmid, Steven R. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 91
[3]  
America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), 2018, STAND ROADM ADD MAN, V2
[4]  
[Anonymous], 2012, Standard Test Methods for Tension Testing of Metallic Materials, DOI DOI 10.1520/E0008
[5]  
[Anonymous], 2012, Standard Specification for High-Purity Dense Aluminum Oxide for Medical Application, P1, DOI [10.1520/D2872-19.2, DOI 10.1520/D2872-19.2, 10.1520/D5681-09.2, DOI 10.1520/F2924-14.2]
[6]  
ASTM International, 2015, ASTM INT, DOI [10.1520/D7891-15, DOI 10.1520/D7891-15]
[7]  
ASTM International, 2019, E2283 ASTM INT, DOI [10.1520/E2283-08R19.1, DOI 10.1520/E2283-08R19.1]
[8]  
ASTM International, 2013, Annu. Book ASTM Stand, V03, P1, DOI [10.1520/E0647-15E01, DOI 10.1520/E0112-13]
[9]  
ASTM International, 2020, B215 STANDARD PRACTI, DOI [10.1520/B0215-15, DOI 10.1520/B0215-15]
[10]   Extreme value models for the assessment of steels containing multiple types of inclusion [J].
Beretta, S ;
Anderson, C ;
Murakami, Y .
ACTA MATERIALIA, 2006, 54 (08) :2277-2289