TWISTED QUANTUM AFFINIZATIONS AND QUANTIZATION OF EXTENDED AFFINE LIE ALGEBRAS

被引:4
作者
Chen, Fulin [1 ]
Jing, Naihuan [2 ]
Kong, Fei [3 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] HUNAN Normal Univ, Sch Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Peoples R China
关键词
Twisted quantum affinization; extended affine Lie algebra; quantum Kac-Moody algebra; triangular decomposition; Hopf algebra; KAC-MOODY ALGEBRAS; DRINFELD REALIZATION; VERTEX REPRESENTATIONS; CARTAN SUBALGEBRAS; LOOP ALGEBRAS; MODULES; CONSTRUCTION; CONJUGACY; DUALITY; SHUFFLE;
D O I
10.1090/tran/8706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for an arbitrary Kac-Moody Lie algebra g and a diagram automorphism mu of g satisfying certain natural linking conditions, we introduce and study a mu-twisted quantum affinization algebra U-(h) over bar((g) over cap (mu)) of g. When g is of finite type, U-(h) over bar((g) over cap (mu)) is Drinfeld's current algebra realization of the twisted quantum affine algebra. When mu = id and g in affine type, U-(h) over bar((g) over cap (mu)) is the quantum toroidal algebra introduced by Ginzburg, Kapranov and Vasserot. As the main results of this paper, we first prove a triangular decomposition for U-(h) over bar((g) over cap (mu)). Second, we give a simple characterization of the affine quantum Serre relations on restricted U-(h) over bar((g) over cap (mu))-modules in terms of "normal order products". Third, we prove that the category of restricted U-(h) over bar((g) over cap (mu))-modules is a monoidal category and hence obtain a topological Hopf algebra structure on the "restricted completion" of U-(h) over bar((g) over cap (mu)). Last, we study the classical limit of U-(h) over bar((g) over cap (mu)) and abridge it to the quantization theory of extended affine Lie algebras. In particular, based on a classification result of Allison-Berman-Pianzola, we obtain the (h) over bar -deformation of all nullity 2 extended affine Lie algebras.
引用
收藏
页码:969 / 1039
页数:71
相关论文
共 68 条
[51]  
Li HS, 2010, COMMUN MATH PHYS, V296, P475, DOI 10.1007/s00220-010-1026-7
[52]   A new construction of vertex algebras and quasi-modules for vertex algebras [J].
Li, HS .
ADVANCES IN MATHEMATICS, 2006, 202 (01) :232-286
[53]  
Lusztig G, 2010, MOD BIRKHAUSER CLASS, P1, DOI 10.1007/978-0-8176-4717-9
[54]   QUANTUM DEFORMATIONS OF CERTAIN SIMPLE MODULES OVER ENVELOPING-ALGEBRAS [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :237-249
[55]   Toroidal and level 0 Uq sln+1 actions on Uq gln+1 modules [J].
Miki, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (06) :3191-3210
[56]   Representations of quantum toroidal algebra Uq(sln+1,tor) (n≥2) [J].
Miki, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) :7079-7098
[57]  
Miki K, 2006, OSAKA J MATH, V43, P895
[58]   Quiver varieties and finite dimensional representations of quantum affine algebras [J].
Nakajima, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (01) :145-238
[59]  
Neher E., 2004, C. R. Math. Acad. Sci. Soc. R. Can., V26, P90
[60]  
Neher E, 2011, PROG MATH, V288, P53, DOI 10.1007/978-0-8176-4741-4_3