TWISTED QUANTUM AFFINIZATIONS AND QUANTIZATION OF EXTENDED AFFINE LIE ALGEBRAS

被引:4
作者
Chen, Fulin [1 ]
Jing, Naihuan [2 ]
Kong, Fei [3 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] HUNAN Normal Univ, Sch Math & Stat, Minist Educ, Key Lab Comp & Stochast Math, Changsha 410081, Peoples R China
关键词
Twisted quantum affinization; extended affine Lie algebra; quantum Kac-Moody algebra; triangular decomposition; Hopf algebra; KAC-MOODY ALGEBRAS; DRINFELD REALIZATION; VERTEX REPRESENTATIONS; CARTAN SUBALGEBRAS; LOOP ALGEBRAS; MODULES; CONSTRUCTION; CONJUGACY; DUALITY; SHUFFLE;
D O I
10.1090/tran/8706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for an arbitrary Kac-Moody Lie algebra g and a diagram automorphism mu of g satisfying certain natural linking conditions, we introduce and study a mu-twisted quantum affinization algebra U-(h) over bar((g) over cap (mu)) of g. When g is of finite type, U-(h) over bar((g) over cap (mu)) is Drinfeld's current algebra realization of the twisted quantum affine algebra. When mu = id and g in affine type, U-(h) over bar((g) over cap (mu)) is the quantum toroidal algebra introduced by Ginzburg, Kapranov and Vasserot. As the main results of this paper, we first prove a triangular decomposition for U-(h) over bar((g) over cap (mu)). Second, we give a simple characterization of the affine quantum Serre relations on restricted U-(h) over bar((g) over cap (mu))-modules in terms of "normal order products". Third, we prove that the category of restricted U-(h) over bar((g) over cap (mu))-modules is a monoidal category and hence obtain a topological Hopf algebra structure on the "restricted completion" of U-(h) over bar((g) over cap (mu)). Last, we study the classical limit of U-(h) over bar((g) over cap (mu)) and abridge it to the quantization theory of extended affine Lie algebras. In particular, based on a classification result of Allison-Berman-Pianzola, we obtain the (h) over bar -deformation of all nullity 2 extended affine Lie algebras.
引用
收藏
页码:969 / 1039
页数:71
相关论文
共 68 条
[1]  
Allison B., 1997, Mem. Am. Math. Soc., V603, P122
[2]  
Allison B., 2001, SEL MATH-NEW SER, V7, P149
[3]   A characterization of affine Kac-Moody lie algebras [J].
Allison, BN ;
Berman, S ;
Gao, Y ;
Pianzola, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) :671-688
[4]   Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 [J].
Allison, Bruce ;
Berman, Stephen ;
Pianzola, Arturo .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (02) :327-385
[5]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[6]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[7]   Twisted quantum affine algebras [J].
Chari, V ;
Pressley, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) :461-476
[8]   On quantum toroidal algebra of type A1 [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (01)
[9]   DRINFELD-TYPE PRESENTATIONS OF LOOP ALGEBRAS [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (11) :7713-7753
[10]   Twisted toroidal Lie algebras and Moody-Rao-Yokonuma presentation [J].
Chen, Fulin ;
Jing, Naihuan ;
Kong, Fei ;
Tan, Shaobin .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (06) :1181-1200