Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments

被引:28
作者
Dai, Chenchen [1 ,2 ]
Wang, Yang [1 ]
Shan, Yicheng [1 ]
Ye, Chao [1 ,3 ]
Lv, Zhuochen [1 ]
Yang, Shuo [1 ]
Cao, Leitao [1 ,4 ]
Ren, Jing [1 ]
Yu, Haipeng [2 ]
Liu, Shouxin [2 ]
Shao, Zhengzhong [5 ]
Li, Jian [2 ]
Chen, Wenshuai [2 ]
Ling, Shengjie [1 ,6 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
[2] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Peoples R China
[3] Yancheng Inst Technol, Sch Text & Clothing, Yancheng 224051, Jiangsu, Peoples R China
[4] Inst Zhejiang Univ Quzhou, 78 Jiuhua Roulevard North, Quzhou 324000, Peoples R China
[5] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Lab Adv Mat, Shanghai 200433, Peoples R China
[6] Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
FATIGUE FRACTURE; STRESS; ACTUATORS; SKIN;
D O I
10.1039/d2mh01034h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging applications of hydrogel ionotronics (HIs) in devices and machines require them to maintain their robustness under complex mechanical environments. Nevertheless, existing HIs still suffer from various mechanical limitations, such as the lack of balance between softness, strength, toughness, and fatigue fracture under cyclic loads. Inspired by the structure of the cytoskeleton, this study develops a sustainable HI supported by a double filamentous network. This cytoskeleton-like structure can enhance the strength of the HI by 26 times and its toughness by 3 times. It also enables HI to tolerate extreme mechanical stimuli, such as severe deformation, long-term cyclic loading, and high-frequency shearing and shocking. The advantages of these structurally- and mechanically-optimized HI devices in tactile perception and electroluminescent display, i.e., two practical applications where complex mechanical stimuli need to be sustained, are demonstrated. The findings reported in this study can inspire the design of human skin-like robust and anti-fatigue-fracture HI devices for long-term stable use.
引用
收藏
页码:136 / 148
页数:13
相关论文
共 73 条
[1]  
Adedayo V.A., 2020, PUBLICATION NAME, P7
[2]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[3]   Fatigue Fracture of Self-Recovery Hydrogels [J].
Bai, Ruobing ;
Yang, Jiawei ;
Morelle, Xavier P. ;
Yang, Canhui ;
Suo, Zhigang .
ACS MACRO LETTERS, 2018, 7 (03) :312-317
[4]   Fatigue fracture of tough hydrogels [J].
Bai, Ruobing ;
Yang, Quansan ;
Tang, Jingda ;
Morelle, Xavier P. ;
Vlassak, Joost ;
Suo, Zhigang .
EXTREME MECHANICS LETTERS, 2017, 15 :91-96
[5]   Ionotronic Tough Adhesives with Intrinsic Multifunctionality [J].
Bao, Guangyu ;
Huo, Ran ;
Ma, Zhenwei ;
Strong, Mitchell ;
Valiei, Amin ;
Jiang, Shuaibing ;
Liu, Shiyu ;
Mongeau, Luc ;
Li, Jianyu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) :37849-37861
[6]   Cooperative Effect of Stress and Ion Displacement on the Dynamics of Cross-Link Unzipping and Rupture of Alginate Gels [J].
Baumberger, T. ;
Ronsin, O. .
BIOMACROMOLECULES, 2010, 11 (06) :1571-1578
[7]   Scaling of quasibrittle fracture: Asymptotic analysis [J].
Bazant, ZP .
INTERNATIONAL JOURNAL OF FRACTURE, 1997, 83 (01) :19-40
[8]   From mechanical resilience to active material properties in biopolymer networks [J].
Burla, Federica ;
Mulla, Yuval ;
Vos, Bart E. ;
Aufderhorst-Roberts, Anders ;
Koenderink, Gijsje H. .
NATURE REVIEWS PHYSICS, 2019, 1 (04) :249-263
[9]   Combinatorial Nano-Bio Interfaces [J].
Cai, Pingqiang ;
Zhang, Xiaoqian ;
Wang, Ming ;
Wu, Yun-Long ;
Chen, Xiaodong .
ACS NANO, 2018, 12 (06) :5078-5084
[10]   Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation [J].
Chen, Zhihao ;
Zhang, Taiwei ;
Chen, Chun-Teh ;
Yang, Shuo ;
Lv, Zhuochen ;
Cao, Leitao ;
Ren, Jing ;
Shao, Zhengzhong ;
Jiang, Li-Bo ;
Ling, Shengjie .
MATERIALS HORIZONS, 2022, 9 (06) :1735-1749