ZERO-ERROR CORRECTIBILITY AND PHASE RETRIEVABILITY FOR TWIRLING CHANNELS

被引:0
作者
Han, Deguang [1 ]
Liu, Kai [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
covariant quantum channels; twirling channels; independence number; quantum code; zero-error capacity; orthogonality index; phase retrievable frames; QUANTUM CHANNELS; REPRESENTATIONS;
D O I
10.1016/S0034-4877(24)00012-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A twirling channel is a quantum channel induced by a continuous unitary representation pi Sigma(circle plus)(i)m(i)pi(i) on a compact group G, where pi(i) are inequivalent irreducible representations. Motivated by a recent work [8] on minimal mixed unitary rank of phi(pi), we explore the connections of the independence number, zero-error capacity, quantum codes, orthogonality index and phase retrievability of the quantum channel phi(pi) with the irreducible representation multiplicities m(i) and the irreducible representation dimensions dim H-pi i. In particular, we show that the independence number of phi(pi) is the sum of the multiplicities, the orthogonal index of phi(pi) is exactly the sum of those representation dimensions, and the zero-error capacity is equal to log ( n-ary Sigma(d)(i=1)m(i)). We also present a lower bound for the phase retrievability in terms of the minimal length of phase retrievable frames for C-n
引用
收藏
页码:87 / 102
页数:16
相关论文
共 37 条
  • [11] Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovasz Number
    Duan, Runyao
    Severini, Simone
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1164 - 1174
  • [12] A duality principle for groups
    Dutkay, Dorin
    Han, Deguang
    Larson, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) : 1133 - 1143
  • [13] Twirling channels have minimal mixed-unitary rank
    Girard, Mark
    Levick, Jeremy
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 615 : 207 - 227
  • [14] Programmability of covariant quantum channels
    Gschwendtner, Martina
    Bluhm, Andreas
    Winter, Andreas
    [J]. QUANTUM, 2021, 5 : 1 - 24
  • [15] Gupta V.P., 2015, LECT NOTES PHYS, V902
  • [16] The Choi-Jamiolkowski isomorphism and covariant quantum channels
    Haapasalo, Erkka
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2021, 8 (03) : 351 - 373
  • [17] Optimal covariant quantum measurements
    Haapasalo, Erkka
    Pellonpaa, Juha-Pekka
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (15)
  • [18] Compatibility of Covariant Quantum Channels with Emphasis on Weyl Symmetry
    Haapasalo, Erkka
    [J]. ANNALES HENRI POINCARE, 2019, 20 (09): : 3163 - 3195
  • [19] Han D., 2000, Memoirs of American Mathematical Society, V697
  • [20] Frame duality properties for projective unitary representations
    Han, Deguang
    Larson, David
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 685 - 695