ZERO-ERROR CORRECTIBILITY AND PHASE RETRIEVABILITY FOR TWIRLING CHANNELS

被引:0
作者
Han, Deguang [1 ]
Liu, Kai [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
covariant quantum channels; twirling channels; independence number; quantum code; zero-error capacity; orthogonality index; phase retrievable frames; QUANTUM CHANNELS; REPRESENTATIONS;
D O I
10.1016/S0034-4877(24)00012-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A twirling channel is a quantum channel induced by a continuous unitary representation pi Sigma(circle plus)(i)m(i)pi(i) on a compact group G, where pi(i) are inequivalent irreducible representations. Motivated by a recent work [8] on minimal mixed unitary rank of phi(pi), we explore the connections of the independence number, zero-error capacity, quantum codes, orthogonality index and phase retrievability of the quantum channel phi(pi) with the irreducible representation multiplicities m(i) and the irreducible representation dimensions dim H-pi i. In particular, we show that the independence number of phi(pi) is the sum of the multiplicities, the orthogonal index of phi(pi) is exactly the sum of those representation dimensions, and the zero-error capacity is equal to log ( n-ary Sigma(d)(i=1)m(i)). We also present a lower bound for the phase retrievability in terms of the minimal length of phase retrievable frames for C-n
引用
收藏
页码:87 / 102
页数:16
相关论文
共 37 条
  • [1] A Duality Principle for Groups II: Multi-frames Meet Super-Frames
    Balan, R.
    Dutkay, D.
    Han, D.
    Larson, D.
    Luef, F.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (06)
  • [2] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [3] Braunstein SL, 2011, IEEE INT SYMP INFO, P104, DOI 10.1109/ISIT.2011.6033690
  • [4] Irreducibly SU(2)-covariant quantum channels of low rank
    Chang, Euijung
    Kim, Jaeyoung
    Kwak, Hyesun
    Lee, Hun Hee
    Youn, Sang-Gyun
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2022, 34 (07)
  • [5] Quantifying the coherence of pure quantum states
    Chen, Jianxin
    Grogan, Shane
    Johnston, Nathaniel
    Li, Chi-Kwong
    Plosker, Sarah
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [6] COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES
    CHOI, MD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) : 285 - 290
  • [7] POSITIVE SEMIDEFINITE BIQUADRATIC FORMS
    CHOI, MD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (02) : 95 - 100
  • [8] Informationally complete measurements and group representation
    D'Ariano, GM
    Perinotti, P
    Sacchi, MF
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (06) : S487 - S491
  • [9] Complementarity and additivity for covariant channels
    Datta, N.
    Fukuda, M.
    Holevo, A. S.
    [J]. QUANTUM INFORMATION PROCESSING, 2006, 5 (03) : 179 - 207
  • [10] Quantum data hiding
    DiVincenzo, DP
    Leung, DW
    Terhal, BM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) : 580 - 598