All Three AKT Isoforms Can Upregulate Oxygen Metabolism and Lactate Production in Human Hepatocellular Carcinoma Cell Lines

被引:5
作者
Tian, Ling-Yu [1 ,2 ]
Smit, Daniel J. [1 ]
Popova, Nadezhda V. [1 ]
Horn, Stefan [3 ]
Velasquez, Lis Noelia [4 ,5 ]
Huber, Samuel [4 ,5 ]
Juecker, Manfred [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Inst Biochem & Signal Transduct, Martinistr 52, D-20246 Hamburg, Germany
[2] Peking Univ, Peoples Hosp, Dept Hepatobiliary Surg, Beijing Key Surg Basic Res Lab Liver Cirrhosis & L, Beijing 100044, Peoples R China
[3] Univ Med Ctr Hamburg Eppendorf, Res Dept Cell & Gene Therapy, Dept Stem Cell Transplantat, D-20246 Hamburg, Germany
[4] Univ Med Ctr Hamburg Eppendorf, Dept Med 1, D-20246 Hamburg, Germany
[5] Univ Med Ctr Hamburg Eppendorf, Hamburg Ctr Translat Immunol HCTI, D-20246 Hamburg, Germany
关键词
AKT signaling; AKT isoforms; oxygen metabolism; lactate metabolism; extracellular acidification; glycolysis; Warburg effect; HCC metabolism; HCC treatment; ENERGY-METABOLISM; CANCER; PHOSPHORYLATION;
D O I
10.3390/ijms25042168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.
引用
收藏
页数:16
相关论文
共 45 条
[1]   PET-Based Radiogenomics Supports mTOR Pathway Targeting for Hepatocellular Carcinoma [J].
An, Jihyun ;
Oh, Minyoung ;
Kim, Seog-Young ;
Oh, Yoo-Jin ;
Oh, Bora ;
Oh, Ji-Hye ;
Kim, Wonkyung ;
Jung, Jin Hwa ;
Kim, Ha Il ;
Kim, Jae-Seung ;
Sung, Chang Ohk ;
Shim, Ju Hyun .
CLINICAL CANCER RESEARCH, 2022, 28 (09) :1821-1831
[2]   Inhibition of Akt signaling in hepatoma cells induces apoptotic cell death independent of Akt activation status [J].
Buontempo, Francesca ;
Ersahin, Tulin ;
Missiroli, Silvia ;
Senturk, Serif ;
Etro, Daniela ;
Ozturk, Mehmet ;
Capitani, Silvano ;
Cetin-Atalay, Rengul ;
Neri, Maria Luca .
INVESTIGATIONAL NEW DRUGS, 2011, 29 (06) :1303-1313
[3]   The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation [J].
Cerniglia, George J. ;
Dey, Souvik ;
Gallagher-Colombo, Shannon M. ;
Daurio, Natalie A. ;
Tuttle, Stephen ;
Busch, Theresa M. ;
Lin, Alexander ;
Sun, Ramon ;
Esipova, Tatiana V. ;
Vinogradov, Sergei A. ;
Denko, Nicholas ;
Koumenis, Constantinos ;
Maity, Amit .
MOLECULAR CANCER THERAPEUTICS, 2015, 14 (08) :1928-1938
[4]   Mitochondrial Akt Regulation of Hypoxic Tumor Reprogramming [J].
Chae, Young Chan ;
Vaira, Valentina ;
Caino, M. Cecilia ;
Tang, Hsin-Yao ;
Seo, Jae Ho ;
Kossenkov, Andrew V. ;
Ottobrini, Luisa ;
Martelli, Cristina ;
Lucignani, Giovanni ;
Bertolini, Irene ;
Locatelli, Marco ;
Bryant, Kelly G. ;
Ghosh, Jagadish C. ;
Lisanti, Sofia ;
Ku, Bonsu ;
Bosari, Silvano ;
Languino, Lucia R. ;
Speicher, David W. ;
Altieri, Dario C. .
CANCER CELL, 2016, 30 (02) :257-272
[5]   Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer [J].
Chen, Jingjing ;
Guccini, Ilaria ;
Di Mitri, Diletta ;
Brina, Daniela ;
Revandkar, Ajinkya ;
Sarti, Manuela ;
Pasquini, Emiliano ;
Alajati, Abdullah ;
Pinton, Sandra ;
Losa, Marco ;
Civenni, Gianluca ;
Catapano, Carlo V. ;
Sgrignani, Jacopo ;
Cavalli, Andrea ;
D'Antuono, Rocco ;
Asara, John M. ;
Morandi, Andrea ;
Chiarugi, Paola ;
Crotti, Sara ;
Agostini, Marco ;
Montopoli, Monica ;
Masgras, Ionica ;
Rasola, Andrea ;
Garcia-Escudero, Ramon ;
Delaleu, Nicolas ;
Rinaldi, Andrea ;
Bertoni, Francesco ;
de Bono, Johann ;
Carracedo, Arkaitz ;
Alimonti, Andrea .
NATURE GENETICS, 2018, 50 (02) :219-+
[6]   Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells [J].
Chen, Lihua ;
Cheng, Xi ;
Tu, Wenzhi ;
Qi, Zihao ;
Li, Haoran ;
Liu, Fei ;
Yang, Yufei ;
Zhang, Zhe ;
Wang, Ziliang .
CELLULAR ONCOLOGY, 2019, 42 (05) :679-690
[7]   Comparison of hepatocellular carcinoma in Eastern versus Western populations [J].
Choo, Su Pin ;
Tan, Wan Ling ;
Goh, Brian K. P. ;
Tai, Wai Meng ;
Zhu, Andrew X. .
CANCER, 2016, 122 (22) :3430-3446
[8]   We need to talk about the Warburg effect [J].
DeBerardinis, Ralph J. ;
Chandel, Navdeep S. .
NATURE METABOLISM, 2020, 2 (02) :127-129
[9]   Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer [J].
Deng, Xuqian ;
Zhao, Jiaqi ;
Qu, Linlin ;
Duan, Zhiguang ;
Fu, Rongzhan ;
Zhu, Chenhui ;
Fan, Daidi .
BIOCHEMICAL PHARMACOLOGY, 2020, 178
[10]   Liver cancer metabolism: a hexokinase from the stars [J].
Filliol, Aveline ;
Schwabe, Robert F. .
NATURE METABOLISM, 2022, 4 (10) :1225-1226