Machine learning with monotonic constraint for geotechnical engineering applications: an example of slope stability prediction

被引:7
|
作者
Pei, Te [1 ]
Qiu, Tong [2 ]
机构
[1] CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Interpretability; Machine learning; Monotonicity; Slope stability; ALGORITHM; CHARTS; MODEL;
D O I
10.1007/s11440-023-02117-7
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Machine learning (ML) algorithms have been widely applied to analyze geotechnical engineering problems due to recent advances in data science. However, flexible ML models trained with limited data can exhibit unexpected behaviors, leading to low interpretability and physical inconsistency, thus, reducing the reliability and robustness of ML models for risk forecasting and engineering applications. As input features for geotechnical engineering applications often represent physical parameters following intrinsic and often monotonic relationships, incorporating monotonicity into ML models can help ensure the physical realism of model outputs. In this study, monotonicity was introduced as a soft constraint into artificial neural network (ANN) models, and their results were compared with several benchmark ML models. During the training process, data augmentation and point-wise gradient were used to evaluate the monotonicity of model predictions, and monotonicity violations were minimized through a modified loss function. A compilation of slope stability case histories from the literature was used for model development, benchmarking their performance, and evaluating the effects of monotonicity constraints. Cross-validation procedures were used for all model performance evaluations to reduce bias in sample selections. Results showed that unconstrained ML models produced predictions that violate monotonicity in many parts of the input space. However, by adding monotonicity constraints into ANN models, monotonicity violations were effectively reduced while maintaining relatively high performance, thus providing a more robust and interpretable prediction. Using slope stability prediction as a proxy, the methods developed in this study to incorporate monotonicity constraints into ML models can be applied to many geotechnical engineering applications. The proposed approach enhances the reliability and interpretability of ML models, resulting in more accurate and consistent outcomes for real-world applications.
引用
收藏
页码:3863 / 3882
页数:20
相关论文
共 50 条
  • [1] Applying Knowledge-Guided Machine Learning to Slope Stability Prediction
    Pei, Te
    Qiu, Tong
    Shen, Chaopeng
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2023, 149 (10)
  • [2] Evaluation and prediction of slope stability using machine learning approaches
    Lin, Shan
    Zheng, Hong
    Han, Chao
    Han, Bei
    Li, Wei
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2021, 15 (04) : 821 - 833
  • [3] Rock Slope Stability Prediction: A Review of Machine Learning Techniques
    Arif, Arifuggaman
    Zhang, Chunlei
    Sajib, Mahabub Hasan
    Uddin, Md Nasir
    Habibullah, Md
    Feng, Ruimin
    Feng, Mingjie
    Rahman, Md Saifur
    Zhang, Ye
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2025, 43 (03)
  • [4] Evaluation and prediction of slope stability using machine learning approaches
    Shan Lin
    Hong Zheng
    Chao Han
    Bei Han
    Wei Li
    Frontiers of Structural and Civil Engineering, 2021, 15 : 821 - 833
  • [5] Performance Evaluation and Engineering Verification of Machine Learning Based Prediction Models for Slope Stability
    Bai, Gexue
    Hou, Yunlong
    Wan, Baofeng
    An, Ning
    Yan, Yihao
    Tang, Zheng
    Yan, Mingchun
    Zhang, Yihan
    Sun, Daoyuan
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [6] Slope Stability Prediction Using Principal Component Analysis and Hybrid Machine Learning Approaches
    Lei, Daxing
    Zhang, Yaoping
    Lu, Zhigang
    Lin, Hang
    Fang, Bowen
    Jiang, Zheyuan
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [7] Prediction of safety factors for slope stability: comparison of machine learning techniques
    Mahmoodzadeh, Arsalan
    Mohammadi, Mokhtar
    Ali, Hunar Farid Hama
    Ibrahim, Hawkar Hashim
    Abdulhamid, Sazan Nariman
    Nejati, Hamid Reza
    NATURAL HAZARDS, 2022, 111 (02) : 1771 - 1799
  • [8] Prediction of safety factors for slope stability: comparison of machine learning techniques
    Arsalan Mahmoodzadeh
    Mokhtar Mohammadi
    Hunar Farid Hama Ali
    Hawkar Hashim Ibrahim
    Sazan Nariman Abdulhamid
    Hamid Reza Nejati
    Natural Hazards, 2022, 111 : 1771 - 1799
  • [9] Development of a framework for the prediction of slope stability using machine learning paradigms
    Rajan, K. C.
    Aryal, Milan
    Sharma, Keshab
    Bhandary, Netra Prakash
    Pokhrel, Richa
    Acharya, Indra Prasad
    NATURAL HAZARDS, 2025, 121 (01) : 83 - 107
  • [10] Enhanced slope stability prediction using ensemble machine learning techniques
    Yadav, Devendra Kumar
    Chattopadhyay, Swarup
    Tripathy, Debi Prasad
    Mishra, Pragyan
    Singh, Pritiranjan
    SCIENTIFIC REPORTS, 2025, 15 (01):