Silicon nanocavity with a quality factor of 6.7 million fabricated by a CMOS-compatible process

被引:3
作者
Katsura, Masaaki [1 ]
Ota, Yuji [1 ]
Mitsuhashi, Ryota [2 ]
Ohtsuka, Minoru [3 ]
Seki, Miyoshi [3 ]
Yokoyama, Nobuyuki [3 ]
Asano, Takashi [2 ]
Noda, Susumu [2 ,4 ]
Okano, Makoto [3 ]
Takahashi, Yasushi [1 ]
机构
[1] Osaka Metropolitan Univ, Dept Phys & Elect, Sakai, Osaka 5998570, Japan
[2] Kyoto Univ, Dept Elect Sci & Engn, Kyoto 6158510, Japan
[3] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[4] Kyoto Univ, Photon & Elect Sci & Engn Ctr, Kyoto 6158510, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
PHOTONIC CRYSTAL NANOCAVITIES; HETEROSTRUCTURE NANOCAVITIES; LASER; EMISSION; CAVITY;
D O I
10.1364/OE.502707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Here, we report on the increase of the quality-factors of photonic crystal nanocavities fabricated by a CMOS-compatible process. We fabricated nanocavities with the same cavity design but used either a binary photomask or a phase-shift photomask in the photolithography step to assess the impact of the photomask-type on the fabrication accuracy of the air holes. We characterized 62 cavities using time-resolved measurements and the best cavity had a quality-factor of 6.65 x 106. All cavities exhibited a quality-factor larger than 2 million and the overall average was 3.25 x 106. While the estimated magnitude of the scattering loss due to the air hole variations in the 33 cavities fabricated with the phase-shift photomask was slightly lower than that in the 29 cavities fabricated with binary photomask, the phase-shift photomask did not provide a significant improvement in the fabrication accuracy. On average, the scattering loss in these samples is more than 3 times larger than that of nanocavities fabricated using electron-beam lithography, which indicates room for further improvement. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:37993 / 38003
页数:11
相关论文
共 44 条
[1]   Analysis of the experimental Q factors (∼1 million) of photonic crystal nanocavities [J].
Asano, T ;
Song, BS ;
Noda, S .
OPTICS EXPRESS, 2006, 14 (05) :1996-2002
[2]   Photonic crystal nanocavity with a Q factor exceeding eleven million [J].
Asano, Takashi ;
Ochi, Yoshiaki ;
Takahashi, Yasushi ;
Kishimoto, Katsuhiro ;
Noda, Susumu .
OPTICS EXPRESS, 2017, 25 (03) :1769-1777
[3]   Photonic Crystal Nanocavities With an Average Q Factor of 1.9 Million Fabricated on a 300-mm-Wide SOI Wafer Using a CMOS-Compatible Process [J].
Ashida, Kohei ;
Okano, Makoto ;
Yasuda, Takamasa ;
Ohtsuka, Minoru ;
Seki, Miyoshi ;
Yokoyama, Nobuyuki ;
Koshino, Keiji ;
Yamada, Koji ;
Takahashi, Yasushi .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) :4774-4782
[4]   Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies [J].
Ashida, Kohei ;
Okano, Makoto ;
Ohtsuka, Minoru ;
Seki, Miyoshi ;
Yokoyama, Nobuyuki ;
Koshino, Keiji ;
Mori, Masahiko ;
Asano, Takashi ;
Noda, Susumu ;
Takahashi, Yasushi .
OPTICS EXPRESS, 2017, 25 (15) :18165-18174
[5]   Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry [J].
Benevides, Rodrigo ;
Santos, Felipe G. S. ;
Luiz, Gustavo O. ;
Wiederhecker, Gustavo S. ;
Mayer Alegre, Thiago P. .
SCIENTIFIC REPORTS, 2017, 7 (1)
[6]   Chemical sensing in slotted photonic crystal heterostructure cavities [J].
Di Falco, A. ;
O'Faolain, L. ;
Krauss, T. F. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)
[7]   Fully embedded photonic crystal cavity with Q=0.6 million fabricated within a full-process CMOS multiproject wafer [J].
Dodane, Delphin ;
Bourderionnet, Jerome ;
Combrie, Sylvain ;
de Rossi, Alfredo .
OPTICS EXPRESS, 2018, 26 (16) :20868-20877
[8]   Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities [J].
Hagino, Hiroyuki ;
Takahashi, Yasushi ;
Tanaka, Yoshinori ;
Asano, Takashi ;
Noda, Susumu .
PHYSICAL REVIEW B, 2009, 79 (08)
[9]   Optimized design for 2 x 106 ultra-high Q silicon photonic crystal cavities [J].
Han, Zheng ;
Checoury, Xavier ;
Neel, Delphine ;
David, Sylvain ;
El Kurdi, Moustafa ;
Boucaud, Philippe .
OPTICS COMMUNICATIONS, 2010, 283 (21) :4387-4391
[10]   A 300-mm Silicon Photonics Platform for Large-Scale Device Integration [J].
Horikawa, Tsuyoshi ;
Shimura, Daisuke ;
Okayama, Hideaki ;
Jeong, Seok-Hwan ;
Takahashi, Hiroyuki ;
Ushida, Jun ;
Sobu, Yohei ;
Shiina, Akemi ;
Tokushima, Masatoshi ;
Kinoshita, Keizo ;
Mogami, Tohru .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (04)