Quantum algorithms for generator coordinate methods

被引:3
|
作者
Zheng, Muqing [1 ,2 ]
Peng, Bo [2 ]
Wiebe, Nathan [2 ,3 ]
Li, Ang [2 ]
Yang, Xiu [1 ]
Kowalski, Karol [2 ]
机构
[1] Lehigh Univ, Bethlehem, PA 18015 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[3] Univ Toronto, Toronto, ON M5G 1Z8, Canada
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
基金
美国国家科学基金会;
关键词
COUPLED-CLUSTER METHOD; MOLECULAR-ORBITAL METHODS; HARTREE-FOCK EQUATIONS; STABILITY CONDITIONS; MEAN-FIELD; OPEN-SHELL; SYSTEMS; MOTION; MODEL; SIMULATION;
D O I
10.1103/PhysRevResearch.5.023200
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses quantum algorithms for the generator coordinate method (GCM) that can be used to benchmark molecular systems. The GCM formalism defined by exponential operators with exponents defined through generators of the fermionic U(N) Lie algebra (Thouless theorem) offers a possibility of probing large subspaces using low-depth quantum circuits. In the present study, we illustrate the performance of the quantum algorithm for constructing a discretized form of the Hill-Wheeler equation for ground-and excited-state energies. We also generalize the standard GCM formulation to multiproduct extension that when collective paths are properly probed can systematically introduce higher rank effects and provide elementary mechanisms for symmetry purification when generator states break the spatial or spin symmetries. The GCM quantum algorithms also can be viewed as an alternative to existing variational quantum eigensolvers, where multistep classical optimization algorithms are replaced by a single-step procedure for solving the Hill-Wheeler eigenvalue problem.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Unleashed from constrained optimization: quantum computing for quantum chemistry employing generator coordinate inspired method
    Zheng, Muqing
    Peng, Bo
    Li, Ang
    Yang, Xiu
    Kowalski, Karol
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [2] Radius evolution of sodium isotopes in mean-field and generator coordinate methods
    Naulin, F
    Zhang, JY
    Flocard, H
    Vautherin, D
    Heenen, PH
    Bonche, P
    PHYSICS LETTERS B, 1998, 429 (1-2) : 15 - 19
  • [3] Emerging quantum computing algorithms for quantum chemistry
    Motta, Mario
    Rice, Julia E.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (03)
  • [4] Quantum algorithms for scientific computing
    Au-Yeung, R.
    Camino, B.
    Rathore, O.
    Kendon, V
    REPORTS ON PROGRESS IN PHYSICS, 2024, 87 (11)
  • [5] The HLRB Cluster as Quantum CISC Compiler Matrix Methods and Applications for Advanced Quantum Control by Gradient-Flow Algorithms on Parallel Clusters
    Schulte-Herbrueggen, T.
    Spoerl, A.
    Waldherr, K.
    Gradl, T.
    Glaser, S. J.
    Huckle, T.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, GARCH/MUNICH 2007, 2009, : 517 - +
  • [6] Wasserstein Proximal Coordinate Gradient Algorithms
    Yao, Rentian
    Chen, Xiaohui
    Yang, Yun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [7] Absolute nodal coordinate particle finite element to the free-surface flow problems combined with multibody algorithms
    Pan, Kai
    Cao, Dengqing
    Li, Jipeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [8] QUANTUM ALGORITHMS FOR NEAREST-NEIGHBOR METHODS FOR SUPERVISED AND UNSUPERVISED LEARNING
    Wiebe, Nathan
    Kapoor, Ashish
    Svore, Krysta M.
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (3-4) : 316 - 356
  • [9] Quantum algorithms from fluctuation theorems: Thermal-state preparation
    Holmes, Zoe
    Muraleedharan, Gopikrishnan
    Somma, Rolando D.
    Subasi, Yigit
    Sahinoglu, Burak
    QUANTUM, 2022, 6 : 1 - 55
  • [10] INTRODUCTION TO QUANTUM ALGORITHMS FOR PHYSICS AND CHEMISTRY
    Yung, Man-Hong
    Whitfield, James D.
    Boixo, Sergio
    Tempel, David G.
    Aspuru-Guzik, Alan
    QUANTUM INFORMATION AND COMPUTATION FOR CHEMISTRY, 2014, 154 : 67 - 106