Hierarchical Co/MoNi heterostructure grown on monocrystalline CoNiMoOx nanorods with robust bifunctionality for hydrazine oxidation-assisted energy-saving hydrogen evolution

被引:13
作者
Xiao, Zehao [1 ]
Wang, Jie [3 ]
Lu, Hongxiu [1 ]
Qian, Yinyin [2 ]
Zhang, Qiang [3 ]
Tang, Aidong [1 ,2 ]
Yang, Huaming [2 ,3 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] China Univ Geosci, Engn Res Ctr Nanogeomaterials, Minist Educ, Wuhan 430074, Peoples R China
[3] Cent South Univ, Sch Minerals Proc & Bioengn, Hunan Key Lab Mineral Mat & Applicat, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
PERSPECTIVE; CATALYST; CU;
D O I
10.1039/d3ta02930a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing thermodynamically unfavorable water oxidation by hydrazine oxidation reaction to accomplish energy-saving hydrogen evolution while efficiently disposing toxic hydrazine-rich wastewater is generally considered as an advantageous strategy. However, the unsatisfactory high voltage of the cell system owing to the lack of the active bifunctional catalysts and insufficient mechanistic understanding of hydrazine oxidation severely limit its development. Hence, we demonstrate the bifunctional metallic hierarchical Co/MoNi heterostructure grown on oxygen vacancy-modified monocrystalline CoNiMoOx nanorods for accelerating both hydrazine oxidation (-23 mV at 100 mA cm(-2)) and seawater reduction (-79 mV at 100 mA cm(-2)). Impressively, such catalyst-assembled hybrid seawater electrolyzer demands an electricity consumption of only 0.143 kW h m(-3) H-2 at 100 mA cm(-2) and cuts 90% power expense compared to traditional alkaline water splitting electrolyzer. DFT calculations reveal that the boosted bifunctional activity is attributed to the construction of Co/MoNi heterostructure that promotes the reaction kinetics of water dissociation, hydrogen adsorption, and stepwise dehydrogenation. These findings help to fundamentally explore the catalytic mechanism of hierarchical metallic heterostructure and highlight the rational design of fast-kinetic bifunctional catalysts for realizing large-scale energy-saving hydrogen evolution and simultaneous fast disposal of hydrazine-rich sewage.
引用
收藏
页码:15749 / 15759
页数:11
相关论文
共 66 条
[1]   Tunable Plasmon Resonances in Two-Dimensional Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Latham, Kay ;
Field, Matthew R. ;
Yao, David D. ;
Medehkar, Nikhil V. ;
Beane, Gary A. ;
Kaner, Richard B. ;
Russo, Salvy P. ;
Ou, Jian Zhen ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2014, 26 (23) :3931-3937
[2]   Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media [J].
Anantharaj, Sengeni ;
Noda, Suguru ;
Jothi, Vasanth Rajendiran ;
Yi, SungChul ;
Driess, Matthias ;
Menezes, Prashanth W. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (35) :18981-19006
[3]   Self-Templated Fabrication of MoNi4/MoO3-X Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution [J].
Chen, Yu-Yun ;
Zhang, Yun ;
Zhang, Xing ;
Tang, Tang ;
Luo, Hao ;
Niu, Shuai ;
Dai, Zhi-Hui ;
Wan, Li-Jun ;
Hu, Jin-Song .
ADVANCED MATERIALS, 2017, 29 (39)
[4]   Human health perspective on environmental exposure to hydrazines: A review [J].
Choudhary, G ;
Hansen, H .
CHEMOSPHERE, 1998, 37 (05) :801-843
[5]   Single-Atom Co-Decorated MoS2 Nanosheets Assembled on Metal Nitride Nanorod Arrays as an Efficient Bifunctional Electrocatalyst for pH-Universal Water Splitting [J].
Doan, Thi Luu Luyen ;
Nguyen, Dinh Chuong ;
Prabhakaran, Sampath ;
Kim, Do Hwan ;
Tran, Duy Thanh ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (26)
[6]   Direct Electrolytic Splitting of Seawater: Opportunities and Challenges [J].
Dresp, Soeren ;
Dionigi, Fabio ;
Klingenhof, Malte ;
Strasser, Peter .
ACS ENERGY LETTERS, 2019, 4 (04) :933-942
[7]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[8]   Interaction of N2O(as gas dope) with nickel molybdate catalysts during the oxidative dehydrogenation of propane to propylene [J].
Dury, F ;
Centeno, MA ;
Gaigneaux, EM ;
Ruiz, P .
APPLIED CATALYSIS A-GENERAL, 2003, 247 (02) :231-246
[9]   Control and analysis of hydrazine, hydrazides and hydrazones-Genotoxic impurities in active pharmaceutical ingredients (APIs) and drug products [J].
Elder, D. P. ;
Snodin, D. ;
Teasdale, A. .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2011, 54 (05) :900-910
[10]   Single Crystalline Ultrathin Nickel-Cobalt Alloy Nanosheets Array for Direct Hydrazine Fuel Cells [J].
Feng, Guang ;
Kuang, Yun ;
Li, Pengsong ;
Han, Nana ;
Sun, Ming ;
Zhang, Guoxin ;
Sun, Xiaoming .
ADVANCED SCIENCE, 2017, 4 (03)