Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects

被引:81
作者
Liu, Yiming [1 ]
Tan, Xinyu [1 ,2 ]
Liang, Jie [1 ]
Han, Hongwei [3 ]
Xiang, Peng [1 ]
Yan, Wensheng [1 ,4 ]
机构
[1] China Three Gorges Univ, Coll Elect Engn & New Energy, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Yichang 443002, Peoples R China
[2] China Tree Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Elect & Informat, Inst Carbon Neutral & New Energy, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
interpretable machine learning; machine learning; perovskite materials; perovskite solar cells; technical deconstruction; FINGERPRINT SIMILARITY SEARCH; LEAD HALIDE PEROVSKITES; THERMODYNAMIC STABILITY; CROSS-VALIDATION; NEURAL-NETWORKS; MOLECULAR DESCRIPTOR; SYMBOLIC REGRESSION; MATERIALS DISCOVERY; EXPLAINABLE AI; DATA SCIENCE;
D O I
10.1002/adfm.202214271
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Data-driven epoch, the development of machine learning (ML) in materials and device design is an irreversible trend. Its ability and efficiency to handle nonlinear and game-playing problems is unmatched by traditional simulation computing software and trial-error experiments. Perovskite solar cells are complex physicochemical devices (systems) that consist of perovskite materials, transport layer materials, and electrodes. Predicting the physicochemical properties and screening the component materials related to perovskite solar cells is the strong point of ML. However, the applications of ML in perovskite solar cells and component materials has only begun to boom in the last two years, so it is necessary to provide a review of the involved ML technologies, the application status, the facing urgent challenges and the development blueprint.
引用
收藏
页数:38
相关论文
共 270 条
[31]  
Chen H., 2020, EXPLAINABLE HEALTHCA, V914, P261
[32]   Shape optimization of fluid cooling channel based on Darcy reduced-order isogeometric analysis [J].
Chen, Long ;
Wang, Kai ;
Li, Baotong ;
Mao, Yicheng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
[33]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[34]   Bayesian optimization based on a unified figure of merit for accelerated materials screening: A case study of halide perovskites [J].
Chen, Xiwen ;
Wang, Chen ;
Liu, Zhenzhu ;
Hou, Zhufeng ;
Yin, Wan-Jian .
SCIENCE CHINA-MATERIALS, 2020, 63 (06) :1024-1035
[35]   Comparative analysis of machine learning approaches on the prediction of the electronic properties of perovskites: A case study of ABX3 and A2BB'X6 [J].
Chenebuah, Ericsson Tetteh ;
Nganbe, Michel ;
Tchagang, Alain Beaudelaire .
MATERIALS TODAY COMMUNICATIONS, 2021, 27
[36]  
Cheng Y., 2021, FRONT MICROBIOL, V6
[37]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[38]   Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning [J].
Chowdhury, Asif J. ;
Yang, Wenqiang ;
Walker, Eric ;
Mamun, Osman ;
Heyden, Andreas ;
Terejanu, Gabriel A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49) :28142-28150
[39]   A historical perspective of explainable Artificial Intelligence [J].
Confalonieri, Roberto ;
Coba, Ludovik ;
Wagner, Benedikt ;
Besold, Tarek R. .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (01)
[40]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297