Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects

被引:85
作者
Liu, Yiming [1 ]
Tan, Xinyu [1 ,2 ]
Liang, Jie [1 ]
Han, Hongwei [3 ]
Xiang, Peng [1 ]
Yan, Wensheng [1 ,4 ]
机构
[1] China Three Gorges Univ, Coll Elect Engn & New Energy, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Yichang 443002, Peoples R China
[2] China Tree Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Elect & Informat, Inst Carbon Neutral & New Energy, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
interpretable machine learning; machine learning; perovskite materials; perovskite solar cells; technical deconstruction; FINGERPRINT SIMILARITY SEARCH; LEAD HALIDE PEROVSKITES; THERMODYNAMIC STABILITY; CROSS-VALIDATION; NEURAL-NETWORKS; MOLECULAR DESCRIPTOR; SYMBOLIC REGRESSION; MATERIALS DISCOVERY; EXPLAINABLE AI; DATA SCIENCE;
D O I
10.1002/adfm.202214271
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Data-driven epoch, the development of machine learning (ML) in materials and device design is an irreversible trend. Its ability and efficiency to handle nonlinear and game-playing problems is unmatched by traditional simulation computing software and trial-error experiments. Perovskite solar cells are complex physicochemical devices (systems) that consist of perovskite materials, transport layer materials, and electrodes. Predicting the physicochemical properties and screening the component materials related to perovskite solar cells is the strong point of ML. However, the applications of ML in perovskite solar cells and component materials has only begun to boom in the last two years, so it is necessary to provide a review of the involved ML technologies, the application status, the facing urgent challenges and the development blueprint.
引用
收藏
页数:38
相关论文
共 270 条
[91]   Discovering Physical Concepts with Neural Networks [J].
Iten, Raban ;
Metger, Tony ;
Wilming, Henrik ;
del Rio, Lidia .
PHYSICAL REVIEW LETTERS, 2020, 124 (01)
[92]   A Machine Learning-Assisted Approach to a Rapid and Reliable Screening for Mechanically Stable Perovskite-Based Materials [J].
Jaafreh, Russlan ;
Sharan, Abhishek ;
Sajjad, Muhammad ;
Singh, Nirpendra ;
Hamad, Kotiba .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (01)
[93]   An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles [J].
Jacobsson, T. Jesper ;
Hultqvist, Adam ;
Garcia-Fernandez, Alberto ;
Anand, Aman ;
Al-Ashouri, Amran ;
Hagfeldt, Anders ;
Crovetto, Andrea ;
Abate, Antonio ;
Ricciardulli, Antonio Gaetano ;
Vijayan, Anuja ;
Kulkarni, Ashish ;
Anderson, Assaf Y. ;
Darwich, Barbara Primera ;
Yang, Bowen ;
Coles, Brendan L. ;
Perini, Carlo A. R. ;
Rehermann, Carolin ;
Ramirez, Daniel ;
Fairen-Jimenez, David ;
Di Girolamo, Diego ;
Jia, Donglin ;
Avila, Elena ;
Juarez-Perez, Emilio J. ;
Baumann, Fanny ;
Mathies, Florian ;
Gonzalez, G. S. Anaya ;
Boschloo, Gerrit ;
Nasti, Giuseppe ;
Paramasivam, Gopinath ;
Martinez-Denegri, Guillermo ;
Nasstrom, Hampus ;
Michaels, Hannes ;
Kobler, Hans ;
Wu, Hua ;
Benesperi, Iacopo ;
Dar, M. Ibrahim ;
Pehlivan, Ilknur Bayrak ;
Gould, Isaac E. ;
Vagott, Jacob N. ;
Dagar, Janardan ;
Kettle, Jeff ;
Yang, Jie ;
Li, Jinzhao ;
Smith, Joel A. ;
Pascual, Jorge ;
Jeronimo-Rendon, Jose J. ;
Montoya, Juan Felipe ;
Correa-Baena, Juan-Pablo ;
Qiu, Junming ;
Wang, Junxin .
NATURE ENERGY, 2022, 7 (01) :107-115
[94]   New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships [J].
Jain, Anubhav ;
Hautier, Geoffroy ;
Ong, Shyue Ping ;
Persson, Kristin .
JOURNAL OF MATERIALS RESEARCH, 2016, 31 (08) :977-994
[95]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[96]   Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases [J].
Jain, Deepak ;
Chaube, Suryanaman ;
Khullar, Prerna ;
Srinivasan, Sriram Goverapet ;
Rai, Beena .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (35) :19423-19436
[97]   Feature dimensionality reduction: a review [J].
Jia, Weikuan ;
Sun, Meili ;
Lian, Jian ;
Hou, Sujuan .
COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (03) :2663-2693
[98]   Artificial intelligence in healthcare: past, present and future [J].
Jiang, Fei ;
Jiang, Yong ;
Zhi, Hui ;
Dong, Yi ;
Li, Hao ;
Ma, Sufeng ;
Wang, Yilong ;
Dong, Qiang ;
Shen, Haipeng ;
Wang, Yongjun .
STROKE AND VASCULAR NEUROLOGY, 2017, 2 (04) :230-243
[99]   Machine learning: Trends, perspectives, and prospects [J].
Jordan, M. I. ;
Mitchell, T. M. .
SCIENCE, 2015, 349 (6245) :255-260
[100]   Accelerating materials discovery using machine learning [J].
Juan, Yongfei ;
Dai, Yongbing ;
Yang, Yang ;
Zhang, Jiao .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 :178-190