Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects

被引:85
作者
Liu, Yiming [1 ]
Tan, Xinyu [1 ,2 ]
Liang, Jie [1 ]
Han, Hongwei [3 ]
Xiang, Peng [1 ]
Yan, Wensheng [1 ,4 ]
机构
[1] China Three Gorges Univ, Coll Elect Engn & New Energy, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Yichang 443002, Peoples R China
[2] China Tree Gorges Univ, Coll Mat & Chem Engn, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[4] Hangzhou Dianzi Univ, Sch Elect & Informat, Inst Carbon Neutral & New Energy, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
interpretable machine learning; machine learning; perovskite materials; perovskite solar cells; technical deconstruction; FINGERPRINT SIMILARITY SEARCH; LEAD HALIDE PEROVSKITES; THERMODYNAMIC STABILITY; CROSS-VALIDATION; NEURAL-NETWORKS; MOLECULAR DESCRIPTOR; SYMBOLIC REGRESSION; MATERIALS DISCOVERY; EXPLAINABLE AI; DATA SCIENCE;
D O I
10.1002/adfm.202214271
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Data-driven epoch, the development of machine learning (ML) in materials and device design is an irreversible trend. Its ability and efficiency to handle nonlinear and game-playing problems is unmatched by traditional simulation computing software and trial-error experiments. Perovskite solar cells are complex physicochemical devices (systems) that consist of perovskite materials, transport layer materials, and electrodes. Predicting the physicochemical properties and screening the component materials related to perovskite solar cells is the strong point of ML. However, the applications of ML in perovskite solar cells and component materials has only begun to boom in the last two years, so it is necessary to provide a review of the involved ML technologies, the application status, the facing urgent challenges and the development blueprint.
引用
收藏
页数:38
相关论文
共 270 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[3]   Data preprocessing in predictive data mining [J].
Alexandropoulos, Stamatios-Aggelos N. ;
Kotsiantis, Sotiris B. ;
Vrahatis, Michael N. .
KNOWLEDGE ENGINEERING REVIEW, 2019, 34
[4]   Machine Learning Accelerated Recovery of the Cubic Structure in Mixed-Cation Perovskite Thin Films [J].
Ali, Adnan ;
Park, Heesoo ;
Mall, Raghvendra ;
Aissa, Brahim ;
Sanvito, Stefano ;
Bensmail, Halima ;
Belaidi, Abdelhak ;
El-Mellouhi, Fedwa .
CHEMISTRY OF MATERIALS, 2020, 32 (07) :2998-3006
[5]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[6]   Topological feature engineering for machine learning based halide perovskite materials design [J].
Anand, D. Vijay ;
Xu, Qiang ;
Wee, JunJie ;
Xia, Kelin ;
Sum, Tze Chien .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[7]   Explainable artificial intelligence: an analytical review [J].
Angelov, Plamen P. ;
Soares, Eduardo A. ;
Jiang, Richard ;
Arnold, Nicholas I. ;
Atkinson, Peter M. .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
[8]  
[Anonymous], BEST RES CELL EFFICI
[9]  
[Anonymous], 2012, Phys. Rev. Lett
[10]  
Arbib M., 1995, The handbook of brain theory and neural networks