Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies

被引:64
作者
Gallo, Selene [1 ,2 ]
El-Gazzar, Ahmed [1 ,2 ]
Zhutovsky, Paul [1 ,2 ]
Thomas, Rajat M. [1 ,2 ]
Javaheripour, Nooshin [3 ]
Li, Meng [3 ]
Bartova, Lucie [4 ]
Bathula, Deepti [5 ]
Dannlowski, Udo [6 ]
Davey, Christopher [7 ]
Frodl, Thomas [8 ,9 ]
Gotlib, Ian [10 ]
Grimm, Simone [11 ]
Grotegerd, Dominik [6 ]
Hahn, Tim [6 ]
Hamilton, Paul J. [12 ]
Harrison, Ben J. [7 ]
Jansen, Andreas [13 ]
Kircher, Tilo
Meyer, Bernhard [4 ]
Nenadic, Igor [13 ]
Olbrich, Sebastian [14 ]
Paul, Elisabeth [12 ]
Pezawas, Lukas [4 ]
Sacchet, Matthew D. [15 ]
Saemann, Philipp [16 ]
Wagner, Gerd [3 ]
Walter, Henrik [17 ]
Walter, Martin [8 ,9 ]
van Wingen, Guido [1 ,2 ]
机构
[1] Amsterdam UMC, Dept Psychiat, Locat Univ Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Amsterdam, Netherlands
[3] Jena Univ Hosp, Dept Psychiat & Psychotherapy, Jena, Germany
[4] Med Univ Vienna, Dept Psychiat & Psychotherapy, Vienna, Austria
[5] Indian Inst Technol IIT, Ropar, India
[6] Univ Munster, Inst Translat Psychiat, Munster, Germany
[7] Univ Melbourne, Dept Psychiat, Melbourne, Vic, Australia
[8] Otto von Guericke Univ, Dept Psychiat & Psychotherapy, Magdeburg, Germany
[9] German Ctr Mental Hlth, CIRC, Magdeburg, Germany
[10] Stanford Univ, Dept Psychol, Charitepl 1, Stanford, CA 94305 USA
[11] Charite Univ Med Berlin, Dept Psychiat, Charitepl 1, D-10117 Berlin, Germany
[12] Linkoping Univ, Ctr Social & Affect Neurosci, Dept Biomed & Clin Sci, Linkoping, Sweden
[13] Univ Marburg, Dept Psychiat, Marburg, Germany
[14] Univ Hosp Zurich, Dept Psychiat Psychotherapy & Psychosomat, Zurich, Switzerland
[15] Harvard Med Sch, McLean Hosp, Ctr Depress Anxiety & Stress Res, Belmont, MA USA
[16] Max Planck Inst Psychiat, Munich, Germany
[17] Charite Univ Med Berlin, Charitepl 1, D-10117 Berlin, Germany
基金
奥地利科学基金会; 欧盟地平线“2020”; 英国医学研究理事会; 爱尔兰科学基金会;
关键词
DEFAULT-MODE NETWORK; CLASSIFICATION; METAANALYSIS; WAKEFULNESS; ACTIVATION; BIOMARKERS; DISEASE; MATTER; CORTEX; NOISE;
D O I
10.1038/s41380-023-01977-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
引用
收藏
页码:3013 / 3022
页数:10
相关论文
共 73 条
[1]   Induction of Belief Decision Trees from Data [J].
AbuDahab, Khalil ;
Xu, Dong-ling ;
Keane, John .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :2262-2265
[2]  
[Anonymous], 1980, Diagnostic and Statistical Manual of Mental Disorders, V3rd, DOI [DOI 10.1176/APPI.BOOKS.9780890425787, DOI 10.1176/APPI.BOOKS.9780890425596]
[3]   Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters [J].
Bruin, Willem B. ;
Taylor, Luke ;
Thomas, Rajat M. ;
Shock, Jonathan P. ;
Zhutovsky, Paul ;
Abe, Yoshinari ;
Alonso, Pino ;
Ameis, Stephanie H. ;
Anticevic, Alan ;
Arnold, Paul D. ;
Assogna, Francesca ;
Benedetti, Francesco ;
Beucke, Jan C. ;
Boedhoe, Premika S. W. ;
Bollettini, Irene ;
Bose, Anushree ;
Brem, Silvia ;
Brennan, Brian P. ;
Buitelaar, Jan K. ;
Calvo, Rosa ;
Cheng, Yuqi ;
Cho, Kang Ik K. ;
Dallaspezia, Sara ;
Denys, Damiaan ;
Ely, Benjamin A. ;
Feusner, Jamie D. ;
Fitzgerald, Kate D. ;
Fouche, Jean-Paul ;
Fridgeirsson, Egill A. ;
Gruner, Patricia ;
Guersel, Deniz A. ;
Hauser, Tobias U. ;
Hirano, Yoshiyuki ;
Hoexter, Marcelo Q. ;
Hu, Hao ;
Huyser, Chaim ;
Ivanov, Iliyan ;
James, Anthony ;
Jaspers-Fayer, Fern ;
Kathmann, Norbert ;
Kaufmann, Christian ;
Koch, Kathrin ;
Kuno, Masaru ;
Kvale, Gerd ;
Kwon, Jun Soo ;
Liu, Yanni ;
Lochner, Christine ;
Lazaro, Luisa ;
Marques, Paulo ;
Marsh, Rachel .
TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
[4]  
Castelvecchi D, 2016, NATURE, V538, P21, DOI [10.1038/538020a, 10.1038/538020a]
[5]   Mitigating site effects in covariance for machine learning in neuroimaging data [J].
Chen, Andrew A. ;
Beer, Joanne C. ;
Tustison, Nicholas J. ;
Cook, Philip A. ;
Shinohara, Russell T. ;
Shou, Haochang .
HUMAN BRAIN MAPPING, 2022, 43 (04) :1179-1195
[6]  
Chinn S, 2000, STAT MED, V19, P3127, DOI 10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>3.3.CO
[7]  
2-D
[8]  
Clementz Brett A, 2018, Focus (Am Psychiatr Publ), V16, P225, DOI 10.1176/appi.focus.16207
[9]  
Cohen J., 1992, CURR DIR PSYCHOL SCI, V1, P98, DOI [DOI 10.1111/1467-8721.EP10768783, DOI 10.2307/20182143]
[10]  
Coleman J.R.I., 2020, Biol. Psychiatry, V88, P169, DOI [10.1016/j.biopsych.2019.10.015, DOI 10.1016/J.BIOPSYCH.2019.10.015]