Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier-Stokes Equations

被引:2
作者
Abuasbeh, Kinda [1 ]
Shafqat, Ramsha [2 ]
Niazi, Azmat Ullah Khan [2 ]
Salman, Hassan J. Al [1 ]
Ghafli, Ahmed A. Al [1 ]
Awadalla, Muath [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, Al Hasa 31982, Saudi Arabia
[2] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
关键词
Navier-Stokes equations; Caputo fractional derivative; existence; stability; Mittag-Leffler functions; mild solutions; regularity;
D O I
10.3390/fractalfract7010026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The gravitational effect is a physical phenomenon that explains the motion of a conductive fluid flowing under the impact of an exterior gravitational force. In this paper, we work on the Navier-Stokes equations (NSES) of the fluid flowing under the impact of an exterior gravitational force inclined at an angle of 45 degrees with A time-fractional derivative of order beta is an element of (0,1). To encourage anomalous diffusion in fractal media, we apply these equations. In H-delta,H-r,H- we prove the existence and uniqueness of local and global mild solutions. Additionally, we provide moderate local solutions in J(r). Additionally, we establish the regularity and existence of classical solutions to these equations in J(r).
引用
收藏
页数:28
相关论文
共 20 条
[1]   Local and Global Existence and Uniqueness of Solution for Time-Fractional Fuzzy Navier-Stokes Equations [J].
Abuasbeh, Kinda ;
Shafqat, Ramsha ;
Niazi, Azmat Ullah Khan ;
Awadalla, Muath .
FRACTAL AND FRACTIONAL, 2022, 6 (06)
[2]   Pattern Formation Induced by Fuzzy Fractional-Order Model of COVID-19 [J].
Alnahdi, Abeer S. ;
Shafqat, Ramsha ;
Niazi, Azmat Ullah Khan ;
Jeelani, Mdi Begum .
AXIOMS, 2022, 11 (07)
[3]  
Davidson P.A., 2002, INTRO MAGNETOHYDRODY, P781
[4]   Mild solutions to the time fractional Navier-Stokes equations in RN [J].
de Carvalho-Neto, Paulo Mendes ;
Planas, Gabriela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2948-2980
[5]  
Desjardins B., 1988, DIFFER INTEGRAL EQU, V11, P377
[6]   On the generalized Navier-Stokes equations [J].
El-Shahed, M ;
Salem, A .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (01) :287-293
[7]   Analytical Solution of Time-Fractional Navier-Stokes Equation in Polar Coordinate by Homotopy Perturbation Method [J].
Ganji, Z. Z. ;
Ganji, D. D. ;
Ganji, Ammar D. ;
Rostamian, M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (01) :117-124
[8]  
Goedbloed J.P.H., 2004, Principles of Magnetohydrodynamics, DOI DOI 10.1017/CBO9780511616945
[9]   On pressure boundary conditions for thermoconvective problems [J].
Herrero, H ;
Mancho, AM .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (05) :391-402
[10]   Existence Results of Fuzzy Delay Impulsive Fractional Differential Equation by Fixed Point Theory Approach [J].
Khan, Aziz ;
Shafqat, Ramsha ;
Niazi, Azmat Ullah Khan .
JOURNAL OF FUNCTION SPACES, 2022, 2022