On-demand electrical control of spin qubits

被引:36
作者
Gilbert, Will [1 ,2 ]
Tanttu, Tuomo [1 ,2 ]
Lim, Wee Han [1 ,2 ]
Feng, MengKe [1 ]
Huang, Jonathan Y. [1 ]
Cifuentes, Jesus D. [1 ]
Serrano, Santiago [1 ]
Mai, Philip Y. [1 ]
Leon, Ross C. C. [1 ]
Escott, Christopher C. [1 ,2 ]
Itoh, Kohei M. [3 ]
Abrosimov, Nikolay V. [4 ]
Pohl, Hans-Joachim [5 ]
Thewalt, Michael L. W. [6 ]
Hudson, Fay E. [1 ,2 ]
Morello, Andrea [1 ]
Laucht, Arne [1 ,2 ]
Yang, Chih Hwan [1 ,2 ]
Saraiva, Andre [1 ,2 ]
Dzurak, Andrew S. [1 ,2 ]
机构
[1] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[2] Diraq, Sydney, NSW, Australia
[3] Keio Univ, Sch Fundamental Sci & Technol, Yokohama, Japan
[4] Leibniz Inst Kristallzuchtung, Berlin, Germany
[5] VITCON Projectconsult GmbH, Jena, Germany
[6] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada
基金
澳大利亚研究理事会;
关键词
QUANTUM; SILICON;
D O I
10.1038/s41565-022-01280-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Once called a 'classically non-describable two-valuedness' by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin-orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time T-2,T-Hahn asymptotic to 50 mu s, fast single-qubit gates with T-pi/2 = 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
引用
收藏
页码:131 / +
页数:19
相关论文
共 45 条
[1]   Two-body Wigner molecularization in asymmetric quantum dot spin qubits [J].
Abadillo-Uriel, Jose C. ;
Martinez, Biel ;
Filippone, Michele ;
Niquet, Yann-Michel .
PHYSICAL REVIEW B, 2021, 104 (19)
[2]  
[Anonymous], IEEE INT ROADMAP DEV
[3]   Enrichment of silicon for a better kilogram [J].
Becker, P. ;
Pohl, H. -J. ;
Riemann, H. ;
Abrosimov, N. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (01) :49-66
[4]   Electric-field control and noise protection of the flopping-mode spin qubit [J].
Benito, M. ;
Croot, X. ;
Adelsberger, C. ;
Putz, S. ;
Mi, X. ;
Petta, J. R. ;
Burkard, Guido .
PHYSICAL REVIEW B, 2019, 100 (12)
[5]   Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power [J].
Bosco, Stefano ;
Benito, Monica ;
Adelsberger, Christoph ;
Loss, Daniel .
PHYSICAL REVIEW B, 2021, 104 (11)
[6]   Spiderweb Array: A Sparse Spin-Qubit Array [J].
Boter, Jelmer M. ;
Dehollain, Juan P. ;
van Dijk, Jeroen P. G. ;
Xu, Yuanxing ;
Hensgens, Toivo ;
Versluis, Richard ;
Naus, Henricus W. L. ;
Clarke, James S. ;
Veldhorst, Menno ;
Sebastiano, Fabio ;
Vandersypen, Lieven M. K. .
PHYSICAL REVIEW APPLIED, 2022, 18 (02)
[7]   All-electrical manipulation of silicon spin qubits with tunable spin-valley mixing [J].
Bourdet, Leo ;
Niquet, Yann-Michel .
PHYSICAL REVIEW B, 2018, 97 (15)
[8]   Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot [J].
Corna, Andrea ;
Bourdet, Leo ;
Maurand, Romain ;
Crippa, Alessandro ;
Kotekar-Patil, Dharmraj ;
Bohuslavskyi, Heorhii ;
Lavieville, Romain ;
Hutin, Louis ;
Barraud, Sylvain ;
Jehl, Xavier ;
Vinet, Maud ;
De Franceschi, Silvano ;
Niquet, Yann-Michel ;
Sanquer, Marc .
NPJ QUANTUM INFORMATION, 2018, 4
[9]   Rydberg entangling gates in silicon [J].
Crane, E. ;
Schuckert, A. ;
Le, N. H. ;
Fisher, A. J. .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[10]   Flopping-mode electric dipole spin resonance [J].
Croot, X. ;
Mi, X. ;
Putz, S. ;
Benito, M. ;
Borjans, F. ;
Burkard, G. ;
Petta, J. R. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)