Topology Optimization for Minimum Compliance with Material Volume and Buckling Constraints under Design-Dependent Loads

被引:6
|
作者
Jiang, Yuanteng [1 ]
Zhan, Ke [1 ]
Xia, Jie [1 ]
Zhao, Min [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, State Key Lab Ocean Engn, Shanghai 200240, Peoples R China
[2] Collaborat Innovat Ctr Adv Ship & Deep Sea Explora, Shanghai 200240, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
topology optimization; linearized buckling; buckling constraint; design-dependent loads; CONTINUUM STRUCTURES;
D O I
10.3390/app13010646
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stability is a critical factor in structural design. Although buckling-constrained topology optimization has been investigated in previous work, the problem has not been considered under design-dependent loads. In this study, a model of buckling constraints in topology optimization problems under design-dependent loads was proposed to solve the above problem. First, the Kreisselmeier-Steinhauser aggregation function was employed to reduce multiple constraints to a single constraint. Then, the problem was sequentially approximated using the optimality criteria method tailored to update the variables. After that, a gradient-based optimization algorithm was established based on finite element and sensitivity analyses for the topology optimization problem with design-dependent loads. Finally, four numerical examples with design-dependent loads were comparatively analyzed, with and without bucking-constrained solutions. The calculation results proved the effectiveness and reliability of the optimization algorithm. Therefore, in this study, it was suggested that the developed optimization algorithm gained improved applicability.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Structural topology optimization under design-dependent loads
    Zheng, Bin
    Gea, Hae Chang
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2005, VOL 2, PTS A AND B, 2005, : 939 - 945
  • [2] Topology optimization with design-dependent loads
    Chen, BC
    Kikuchi, N
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2001, 37 (01) : 57 - 70
  • [3] Design-dependent loads in topology optimization
    Bourdin, B
    Chambolle, A
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 (02): : 19 - 48
  • [4] Structural topology optimization with design-dependent pressure loads
    Lee, Edmund
    Martins, Joaquim R. R. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 40 - 48
  • [5] Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads
    Picelli, R.
    Vicente, W. M.
    Pavanello, R.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 135 : 44 - 55
  • [6] Structural topology optimization with design-dependent pressure loads
    Wang, Cunfu
    Zhao, Min
    Ge, Tong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 53 (05) : 1005 - 1018
  • [7] Structural topology optimization with design-dependent pressure loads
    Cunfu Wang
    Min Zhao
    Tong Ge
    Structural and Multidisciplinary Optimization, 2016, 53 : 1005 - 1018
  • [8] Topology optimization subject to design-dependent validity of constraints
    Achtziger, W
    TOPOLOGY OPTIMIZATION OF STRUCTURES AND COMPOSITE CONTINUA, 2000, 7 : 177 - 191
  • [9] Frequency-constrained topology optimization in incompressible multi-material systems under design-dependent loads
    Banh, Thanh T.
    Shin, Soomi
    Kang, Joowon
    Lee, Dongkyu
    THIN-WALLED STRUCTURES, 2024, 196
  • [10] Topology optimization of laminated composite structures with design-dependent loads
    Dai, Yang
    Feng, Miaolin
    Zhao, Min
    COMPOSITE STRUCTURES, 2017, 167 : 251 - 261