Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier

被引:4
作者
Sonjaya, Abeth Novria [1 ,2 ]
Safitri, Kania [1 ]
Surjosatyo, Adi [1 ]
机构
[1] Univ Indonesia, Fac Engn, Dept Mech Engn, Depok, Indonesia
[2] Univ Jayabaya, Fac Ind Technol, Dept Mech Engn, Jakarta, Indonesia
来源
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED | 2023年 / 12卷 / 01期
关键词
bubbling fluidized bed gasifier; rice husk; equivalence ratio; syngas; BIOMASS GASIFICATION; AIR GASIFICATION; COMBUSTION; SYNGAS; WASTE;
D O I
10.14710/ijred.2023.46068
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aimed to determine the effect of rice husk fluidization and variation in the equivalence ratio of bubbling fluidized bed gasifiers without sand bed materials. It also aimed to improve the fluidization quality by reducing the diameter of rice husks. Therefore, the bulk density increases, whereas voidage decreases, both of which are the main parameters for improving the quality of fluidization in solid particles. Experiments were carried out at a velocity of 0.82 m/s, by varying the equivalent ratios ranging from 0.20 to 0.35, and analyzing the syngas composition, cold gas and carbon conversion efficiencies, lower heating value, and temperature distribution. An equivalence ratio of 0.30 was obtained for a bubbling fluidized gasifier with syngas compositions of 7.415%, 15.674%, 3.071%, 17.839%, and 56.031% for H2, CO, CH4, CO2, and N2, respectively. Under these conditions, we obtained cold gas and carbon conversion efficiencies and a lower heating value of 31.340%, 37.120%, and 3.881 MJ/Nm3, respectively.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
[41]   Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk [J].
Karmakar, M. K. ;
Mandal, J. ;
Haldar, S. ;
Chatterjee, P. K. .
FUEL, 2013, 111 :584-591
[42]   Effect of static bed height on the combustion of rice husk in a fluidized bed combustor [J].
Rozainee, M. ;
Ngo, S. P. .
Proceedings of the 18th International Conference on Fluidized Bed Combustion, 2005, :169-176
[43]   Cold model testing of an innovative dual bubbling fluidized bed steam gasifier [J].
Di Carlo, Andrea ;
Moroni, Monica ;
Savuto, Elisa ;
Pallozzi, Vanessa ;
Bocci, Enrico ;
Di Lillo, Patrizio .
CHEMICAL ENGINEERING JOURNAL, 2019, 377
[44]   Multifluid Modeling of the Desulfurization Process within a Bubbling Fluidized Bed Coal Gasifier [J].
Armstrong, Lindsay-Marie ;
Gu, Sai ;
Luo, Kai H. ;
Mahanta, Pinakeswar .
AICHE JOURNAL, 2013, 59 (06) :1952-1963
[45]   Fluidization of sawdust in a cold model circulating fluidized bed: Experimental study [J].
Miao, Qi ;
Wang, Chu ;
Wu, Chuangzhi ;
Yin, Xiuli ;
Zhu, Jesse .
CHEMICAL ENGINEERING JOURNAL, 2011, 167 (01) :335-341
[46]   Experimental Study of Absorbent Hygiene Product Devolatilization in a Bubbling Fluidized Bed [J].
Malsegna, Barbara ;
Di Giuliano, Andrea ;
Gallucci, Katia .
ENERGIES, 2021, 14 (09)
[47]   Modeling and simulation of co-gasification of coal and petcoke in a bubbling fluidized bed coal gasifier [J].
Goyal, Anshul ;
Pushpavanam, S. ;
Voolapalli, Ravi Kumar .
FUEL PROCESSING TECHNOLOGY, 2010, 91 (10) :1296-1307
[48]   In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis [J].
Thakkar, Maharshi ;
Makwana, J. P. ;
Mohanty, Pravakar ;
Shah, Mitesh ;
Singh, Vishal .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 87 :324-332
[49]   Gasification of torrefied Miscanthus x giganteus in an air-blown bubbling fluidized bed gasifier [J].
Xue, G. ;
Kwapinska, M. ;
Horvat, A. ;
Kwapinski, W. ;
Rabou, L. P. L. M. ;
Dooley, S. ;
Czajka, K. M. ;
Leahy, J. J. .
BIORESOURCE TECHNOLOGY, 2014, 159 :397-403
[50]   CFD Simulation of a Bubbling Fluidized Bed Gasifier Using a Bubble-Based Drag Model [J].
Chen, Juhui ;
Yu, Guangbin ;
Dai, Bing ;
Liu, Di ;
Zhao, Lei .
ENERGY & FUELS, 2014, 28 (10) :6351-6360