High-Resolution Metalens Imaging Polarimetry

被引:215
作者
Huang, Zhaorui [1 ]
Zheng, Yaqin [2 ]
Li, Junhao [1 ]
Cheng, Yongzhi [3 ]
Wang, Jian [1 ]
Zhou, Zhang-Kai [2 ]
Chen, Lin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Sun Yat sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[3] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
imaging polarimetry; metalens; high-resolution; interleaved; metasurfaces; OPTICAL METASURFACES; POLARIZATION; PHASE;
D O I
10.1021/acs.nanolett.3c03258
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Imaging polarimeters find many critical applications in applications ranging from remote sensing to biological detection. Metasurfaces have been proposed as a compact approach for imaging polarimeters, but prior strategies suffer from low imaging resolution. Here, we propose an interleaved metalens configuration for polarization imaging where three-row metasurface units within a group individually interact with three pairs of orthogonal polarization channels. The optical paths between the object and adjacent three-row metasurfaces are nearly equal, allowing the construction of a metalens polarimeter with an unlimited numerical aperture (NA), which is beneficial for high-resolution polarization imaging. The metalens polarimeter fabricated by crystalline silicon nanostructures has a NA of 0.51 at 632.8 nm and achieves an imaging resolution of up to a 1.2-fold wavelength. Polarimetric microscopy experiments demonstrate that metalens polarimeters can realize high-resolution polarization imaging for various microscopic samples. This study offers a promising solution for high-resolution metasurface polarization imaging, with the potential for widespread applications.
引用
收藏
页码:10991 / 10997
页数:7
相关论文
共 40 条
[1]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/NNANO.2015.186, 10.1038/nnano.2015.186]
[2]   Full-Stokes Imaging Polarimetry Using Dielectric Metasurfaces [J].
Arbabi, Ehsan ;
Kamali, Seyedeh Mahsa ;
Arbabi, Amir ;
Faraon, Andrei .
ACS PHOTONICS, 2018, 5 (08) :3132-3140
[3]   A Minimalist Single-Layer Metasurface for Arbitrary and Full Control of Vector Vortex Beams [J].
Bao, Yanjun ;
Ni, Jincheng ;
Qiu, Cheng-Wei .
ADVANCED MATERIALS, 2020, 32 (06)
[4]   Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances [J].
Chen, Hongya ;
Wang, Jiafu ;
Ma, Hua ;
Qu, Shaobo ;
Xu, Zhuo ;
Zhang, Anxue ;
Yan, Mingbao ;
Li, Yongfeng .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (15)
[5]   Integrated plasmonic metasurfaces for spectropolarimetry [J].
Chen, Wei Ting ;
Torok, Peter ;
Foreman, Matthew R. ;
Liao, Chun Yen ;
Tsai, Wei-Yi ;
Wu, Pei Ru ;
Tsai, Din Ping .
NANOTECHNOLOGY, 2016, 27 (22)
[6]   High-Contrast Imaging of Cholesterol Crystals in Rabbit Arteries Ex Vivo Using LED-Based Polarization Microscopy [J].
Cho, Seonghee ;
Kim, Kyungmin ;
Kim, Taehoon ;
Park, Hyoeun ;
Kim, Jin-Moo ;
Lee, SeungHoon ;
Kang, YeonSu ;
Chang, Kiyuk ;
Kim, Chulhong .
SENSORS, 2018, 18 (04)
[7]   Polarization microscopy by use of digital holography:: application to optical-fiber birefringence measurements [J].
Colomb, T ;
Dürr, F ;
Cuche, E ;
Marquet, P ;
Limberger, HG ;
Salathé, RP ;
Depeursinge, C .
APPLIED OPTICS, 2005, 44 (21) :4461-4469
[8]   Multifunctional Metasurfaces Enabled by Multifold Geometric Phase Interference [J].
Dai, Anli ;
Fang, Peipei ;
Gao, Jinming ;
Min, Qixuan ;
Hu, Renjie ;
Qiu, Shanfeng ;
Wu, Xianfeng ;
Guo, Jinying ;
Situ, Guohai .
NANO LETTERS, 2023, 23 (11) :5019-5026
[9]   Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry [J].
Dai, Yanmeng ;
Zhang, Yuquan ;
Xie, Youpeng ;
Wang, Dapeng ;
Wang, Xianyou ;
Lei, Ting ;
Min, Changjun ;
Yuan, Xiaocong .
PHOTONICS RESEARCH, 2019, 7 (09) :1066-1074
[10]   Beam-Size-Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces [J].
Ding, Fei ;
Pors, Anders ;
Chen, Yiting ;
Zenin, Vladimir A. ;
Bozhevolnyi, Sergey I. .
ACS PHOTONICS, 2017, 4 (04) :943-949