A stable-state multi-objective evolutionary algorithm based on decomposition

被引:9
|
作者
Wang, Jing [1 ]
Zheng, Yuxin [1 ]
Huang, Pengcheng [1 ]
Peng, Hu [2 ]
Wu, Zhijian [3 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Software & IoT Engn, Nanchang 330032, Peoples R China
[2] JiuJiang Univ, Sch Comp & Big Data Sci, Jiujiang 332005, Peoples R China
[3] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective evolutionary algorithm; Decomposition; Stable-state replacement; Matching mechanism; Neighborhood adjustment; OPTIMIZATION; MOEA/D; SELECTION; ADJUSTMENT; PERFORMANCE; DIVERSITY; STRATEGY;
D O I
10.1016/j.eswa.2023.122452
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The decomposition-based multi-objective evolutionary algorithm (MOEA/D) has been shown to effectively solve real-world multi-objective optimization problems (MOPs). The uniformly distributed weight vectors guide the population to continuously evolve towards the Pareto front (PF). However, the random matching mode between individuals and weight vectors leads to some excellent individuals being replaced in the evolution process. Meanwhile, the number of replaced individuals in the neighborhood is not controlled. This causes a waste of computing resources and fails to balance the diversity and convergence of the population effectively. Referring to the influence on body adjustment of homeostasis in the medical field, the stable-state mechanism is proposed to keep the dynamic balance between exploration and exploitation. Therefore, this paper presents the stable-state multi-objective evolutionary algorithm based on decomposition (MOEA/D-SS) that adopts a new stable-state replacement strategy to adjust the number of replaced individuals within each neighborhood. Furthermore, a stable-state neighborhoods adjustment strategy was proposed to adjust the size of each neighborhood. This mechanism can adjust the convergence and diversity of newly generated individuals at different stages. Finally, several benchmark test suites (i.e., ZDT, DTLZ, and UF) and a practical optimization problem are used to test the performance of MOEA/D-SS. The experimental results demonstrate that the proposed algorithm outperforms other comparative algorithms.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [2] Decomposition based Multi-Objective Evolutionary Algorithm in XCS for Multi-Objective Reinforcement Learning
    Cheng, Xiu
    Browne, Will N.
    Zhang, Mengjie
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 622 - 629
  • [3] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [4] Adaptively weighted decomposition based multi-objective evolutionary algorithm
    Suraj S. Meghwani
    Manoj Thakur
    Applied Intelligence, 2021, 51 : 3801 - 3823
  • [5] An adaptive disturbance multi-objective evolutionary algorithm based on decomposition
    Shi, Yanfang
    Shi, Jianguo
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2022, 41 (04) : 306 - 315
  • [6] A Parameterless Decomposition-based Evolutionary Multi-objective Algorithm
    Gu, Fangqing
    Cheung, Yiu-ming
    Liu, Hai-Lin
    Lin, Zixian
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 842 - 845
  • [7] Adaptively weighted decomposition based multi-objective evolutionary algorithm
    Meghwani, Suraj S.
    Thakur, Manoj
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3801 - 3823
  • [8] Decomposition of Multi-Objective Evolutionary Algorithm based on Estimation of Distribution
    Zhang, Jian-Qiu
    Xu, Feng
    Fang, Xian-Wen
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 249 - 254
  • [9] A Decomposition Based Evolutionary Algorithm with Uniform Design for Multi-objective Optimization
    Dai, Cai
    Lei, Xiujuan
    Ding, Yulian
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2484 - 2489
  • [10] Multi-Objective Evolutionary Algorithm Based on Decomposition With Orthogonal Experimental Design
    He, Maowei
    Wang, Zhixue
    Chen, Hanning
    Cao, Yang
    Ma, Lianbo
    EXPERT SYSTEMS, 2025, 42 (02)