Gastric cancer detection based on Colorectal Cancer transfer learning

被引:1
作者
Nobrega, Sara [1 ]
Neto, Alexandre [2 ]
Coimbra, Miguel [2 ]
Cunha, Antonio [2 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Escola Ciencias & Tecnol, Vila Real, Portugal
[2] Univ Tras Os Montes & Alto Douro, Escola Ciencias & Tecnol, Inst Engn Sistemas & Comp Tecnol & Ciencia, Vila Real, Portugal
来源
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG | 2023年
基金
英国科研创新办公室;
关键词
Gastric Cancer; Colorectal Cancer; Deep Learning; Real; time detection; PREVENTION;
D O I
10.1109/ENBENG58165.2023.10175323
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gastric Cancer (GC) and Colorectal Cancer (CRC) are some of the most common cancers in the world. The most common diagnostic methods are upper endoscopy and biopsy. Possible expert distractions can lead to late diagnosis. GC is a less studied malignancy than CRC, leading to scarce public data that difficult the use of AI detection methods, unlike CRC where public data are available. Considering that CRC endoscopic images present some similarities with GC, a CRC Transfer Learning approach could be used to improve AI GC detectors. This paper evaluates a novel Transfer Learning approach for real-time GC detection, using a YOLOv4 model pre-trained on CRC detection. The results achieved are promising since GC detection improved relatively to the traditional Transfer Learning strategy.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 15 条
[1]   Standalone performance of artificial intelligence for upper GI neoplasia: a meta-analysis [J].
Arribas, Julia ;
Antonelli, Giulio ;
Frazzoni, Leonardo ;
Fuccio, Lorenzo ;
Ebigbo, Alanna ;
van der Sommen, Fons ;
Ghatwary, Noha ;
Palm, Christoph ;
Coimbra, Miguel ;
Renna, Francesco ;
Bergman, J. J. G. H. M. ;
Sharma, Prateek ;
Messmann, Helmut ;
Hassan, Cesare ;
Dinis-Ribeiro, Mario J. .
GUT, 2021, 70 (08) :1458-1468
[2]   HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy [J].
Borgli, Hanna ;
Thambawita, Vajira ;
Smedsrud, Pia H. ;
Hicks, Steven ;
Jha, Debesh ;
Eskeland, Sigrun L. ;
Randel, Kristin Ranheim ;
Pogorelov, Konstantin ;
Lux, Mathias ;
Nguyen, Duc Tien Dang ;
Johansen, Dag ;
Griwodz, Carsten ;
Stensland, Hakon K. ;
Garcia-Ceja, Enrique ;
Schmidt, Peter T. ;
Hammer, Hugo L. ;
Riegler, Michael A. ;
Halvorsen, Pal ;
de Lange, Thomas .
SCIENTIFIC DATA, 2020, 7 (01)
[3]   Etiology and Prevention of Gastric Cancer [J].
Cheng, Xiao Jiao ;
Lin, Jia Cheng ;
Tu, Shui Ping .
GASTROINTESTINAL TUMORS, 2016, 3 (01) :25-36
[4]  
eti.pg.gda, BENCHMARK DATASET DI
[5]   Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images [J].
Hirasawa, Toshiaki ;
Aoyama, Kazuharu ;
Tanimoto, Tetsuya ;
Ishihara, Soichiro ;
Shichijo, Satoki ;
Ozawa, Tsuyoshi ;
Ohnishi, Tatsuya ;
Fujishiro, Mitsuhiro ;
Matsuo, Keigo ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTRIC CANCER, 2018, 21 (04) :653-660
[6]   Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging (with videos) [J].
Horiuchi, Yusuke ;
Hirasawa, Toshiaki ;
Ishizuka, Naoki ;
Tokai, Yoshitaka ;
Namikawa, Ken ;
Yoshimizu, Shoichi ;
Ishiyama, Akiyoshi ;
Yoshio, Toshiyuki ;
Tsuchida, Tomohiro ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) :856-+
[7]   Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists [J].
Ikenoyama, Yohei ;
Hirasawa, Toshiaki ;
Ishioka, Mitsuaki ;
Namikawa, Ken ;
Yoshimizu, Shoichi ;
Horiuchi, Yusuke ;
Ishiyama, Akiyoshi ;
Yoshio, Toshiyuki ;
Tsuchida, Tomohiro ;
Takeuchi, Yoshinori ;
Shichijo, Satoki ;
Katayama, Naoyuki ;
Fujisaki, Junko ;
Tada, Tomohiro .
DIGESTIVE ENDOSCOPY, 2021, 33 (01) :141-150
[8]   Real-time detection of colon polyps during colonoscopy using deep learning: systematic validation with four independent datasets [J].
Lee, Ji Young ;
Jeong, Jinhoon ;
Song, Eun Mi ;
Ha, Chunae ;
Lee, Hyo Jeong ;
Koo, Ja Eun ;
Yang, Dong-Hoon ;
Kim, Namkug ;
Byeon, Jeong-Sik .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   AI-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices [J].
Poon, Carmen C. Y. ;
Jiang, Yuqi ;
Zhang, Ruikai ;
Lo, Winnie W. Y. ;
Cheung, Maggie S. H. ;
Yu, Ruoxi ;
Zheng, Yali ;
Wong, John C. T. ;
Liu, Qing ;
Wong, Sunny H. ;
Mak, Tony W. C. ;
Lau, James Y. W. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[10]   Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice [J].
Renna, Francesco ;
Martins, Miguel ;
Neto, Alexandre ;
Cunha, Antonio ;
Libanio, Diogo ;
Dinis-Ribeiro, Mario ;
Coimbra, Miguel .
DIAGNOSTICS, 2022, 12 (05)