Consformer: Consciousness Detection Using Transformer Networks With Correntropy-Based Measures

被引:4
作者
Sun, Xuyun [1 ,2 ]
Qi, Yu [3 ,4 ]
Ma, Xiulin [5 ]
Xu, Chuan [6 ]
Luo, Benyan [7 ]
Pan, Gang [1 ,3 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[2] Nanjing Res Inst Elect Engn, Nanjing 210013, Jiangsu, Peoples R China
[3] Zhejiang Univ, State Key Lab Brain Machine Intelligence, Hangzhou 310027, Peoples R China
[4] Zhejiang Univ, MOE Frontier Sci Ctr Brain Sci & Brain Machine Int, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ, Sch Brain Sci & Brain Med, Hangzhou 310013, Peoples R China
[6] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Neurol, Hangzhou 310058, Zhejiang, Peoples R China
[7] Zhejiang Univ, Affiliated Hosp 1, Sch Med, Dept Neurol, Hangzhou 310058, Peoples R China
关键词
Consciousness detection; electroencephalogram; transformer; correntropy; machine learning; DISORDERS; EEG; STATE; SCALE; COMA; CONNECTIVITY; AWARENESS;
D O I
10.1109/TNSRE.2023.3250958
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Consciousness detection is important in diagnosis and treatment of disorders of consciousness (DOC). Recent studies have demonstrated that electroencephalography (EEG) signals contain effective information for consciousness state evaluation. We propose two novel EEG measures: the spatiotemporal correntropy and the neuromodulation intensity, to reflect the temporal-spatial complexity in brain signals for consciousness detection. Then, we build a pool of EEG measures with different spectral, complexity and connectivity features, and propose Consformer, a transformer network to learn an adaptive optimization of features for different subjects with the attention mechanism. Experiments are carried out using a large dataset of 280 resting-state EEG recordings of DOC patients. Consformer discriminates minimally conscious state (MCS) from vegetative state (VS) with an accuracy of 85.73% and an F1-score of 86.95%, which achieves the state-of-the-art performance.
引用
收藏
页码:2933 / 2943
页数:11
相关论文
共 48 条
[1]  
Akella S, 2019, IEEE ENG MED BIO, P5790, DOI [10.1109/EMBC.2019.8857255, 10.1109/embc.2019.8857255]
[2]   A Review of Resting-State Electroencephalography Analysis in Disorders of Consciousness [J].
Bai, Yang ;
Xia, Xiaoyu ;
Li, Xiaoli .
FRONTIERS IN NEUROLOGY, 2017, 8
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]   Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness [J].
Chennu, Srivas ;
Annen, Jitka ;
Wannez, Sarah ;
Thibaut, Aurore ;
Chatelle, Camille ;
Cassoi, Helena ;
Martens, Geraldine ;
Schnakers, Caroline ;
Gosseries, Olivia ;
Menon, David ;
Laureys, Steven .
BRAIN, 2017, 140 :2120-2132
[5]   Neurometabolic coupling in the vegetative and minimally conscious states: preliminary findings [J].
Coleman, MR ;
Menon, DK ;
Fryer, TD ;
Pickard, JD .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2005, 76 (03) :432-434
[6]  
Dosovitskiy A., 2021, P INT C LEARN REPR I
[7]   Robust EEG-based cross-site and cross-protocol classification of states of consciousness [J].
Engemann, Denis A. ;
Raimondo, Federico ;
King, Jean-Remi ;
Rohaut, Benjamin ;
Louppe, Gilles ;
Faugeras, Frederic ;
Annen, Jitka ;
Cassol, Helena ;
Gosseries, Olivia ;
Fernandez-Slezak, Diego ;
Laureys, Steven ;
Naccache, Lionel ;
Dehaene, Stanislas ;
Sitt, Jacobo D. .
BRAIN, 2018, 141 :3179-3192
[8]   Detecting awareness after severe brain injury [J].
Fernandez-Espejo, Davinia ;
Owen, Adrian M. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (11) :801-809
[9]   EEG to Identify Attempted Movement in Unresponsive Wakefulness Syndrome [J].
Formaggio, Emanuela ;
Del Felice, Alessandra ;
Cavinato, Marianna ;
Storti, Silvia F. ;
Arcaro, Chiara ;
Turco, Cristina ;
Salvi, Luca ;
Avesani, Renato ;
Piccione, Francesco ;
Manganotti, Paolo .
CLINICAL EEG AND NEUROSCIENCE, 2020, 51 (05) :339-347
[10]  
Freeman W, 2012, Imaging Brain Function With EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals