Genetic Characterization of Listeria from Food of Non-Animal Origin Products and from Producing and Processing Companies in Bavaria, Germany

被引:9
作者
Wartha, Simone [1 ]
Bretschneider, Nancy [1 ]
Dangel, Alexandra [1 ]
Hobmaier, Bernhard [1 ]
Hoermansdorfer, Stefan [1 ]
Huber, Ingrid [1 ]
Murr, Larissa [1 ]
Pavlovic, Melanie [1 ]
Sprenger, Annika [1 ]
Wenning, Mareike [1 ]
Alter, Thomas [2 ]
Messelhaeusser, Ute [1 ]
机构
[1] Bavarian Hlth & Food Safety Author, Dept Erlangen & Oberschleissheim, Vet Str 2, D-85764 Oberschleissheim, Germany
[2] Free Univ Berlin, Inst Food Safety & Food Hyg, D-14195 Berlin, Germany
关键词
Listeria monocytogenes; whole-genome sequencing; antimicrobial resistance; virulence factors; soft fruit; ANTIBIOTIC-RESISTANCE; L-MONOCYTOGENES; ANTIMICROBIAL RESISTANCE; MULTISTATE OUTBREAK; CARAMEL APPLES; UNITED-STATES; STONE FRUIT; GENOME; VIRULENCE; SEELIGERI;
D O I
10.3390/foods12061120
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Reported cases of listeriosis from food of non-animal origin (FNAO) are increasing. In order to assess the risk of exposure to Listeria monocytogenes from FNAO, the genetic characterization of the pathogen in FNAO products and in primary production and processing plants needs to be investigated. For this, 123 samples of fresh and frozen soft fruit and 407 samples of 39 plants in Bavaria, Germany that produce and process FNAO were investigated for Listeria contamination. As a result, 64 Listeria spp. isolates were detected using ISO 11290-1:2017. Environmental swabs and water and food samples were investigated. L. seeligeri (36/64, 56.25%) was the most frequently identified species, followed by L. monocytogenes (8/64, 12.50%), L. innocua (8/64, 12.50%), L. ivanovii (6/64, 9.38%), L. newyorkensis (5/64, 7.81%), and L. grayi (1/64, 1.56%). Those isolates were subsequently sequenced by whole-genome sequencing and subjected to pangenome analysis to retrieve data on the genotype, serotype, antimicrobial resistance (AMR), and virulence markers. Eight out of sixty-four Listeria spp. isolates were identified as L. monocytogenes. The serogroup analysis detected that 62.5% of the L. monocytogenes isolates belonged to serogroup IIa (1/2a and 3a) and 37.5% to serogroup IVb (4b, 4d, and 4e). Furthermore, the MLST (multilocus sequence typing) analysis of the eight detected L. monocytogenes isolates identified seven different sequence types (STs) and clonal complexes (CCs), i.e., ST1/CC1, ST2/CC2, ST6/CC6, ST7/CC7, ST21/CC21, ST504/CC475, and ST1413/CC739. The core genome MLST analysis also showed high allelic differences and suggests plant-specific isolates. Regarding the AMR, we detected phenotypic resistance against benzylpenicillin, fosfomycin, and moxifloxacin in all eight L. monocytogenes isolates. Moreover, virulence factors, such as prfA, hly, plcA, plcB, hpt, actA, inlA, inlB, and mpl, were identified in pathogenic and nonpathogenic Listeria species. The significance of L. monocytogenes in FNAO is growing and should receive increasing levels of attention.
引用
收藏
页数:16
相关论文
共 89 条
[1]   The Metalloprotease Mpl Supports Listeria monocytogenes Dissemination through Resolution of Membrane Protrusions into Vacuoles [J].
Alvarez, Diego E. ;
Agaisse, Herve .
INFECTION AND IMMUNITY, 2016, 84 (06) :1806-1814
[2]   Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014-2015 [J].
Angelo, K. M. ;
Conrad, A. R. ;
Saupe, A. ;
Dragoo, H. ;
West, N. ;
Sorenson, A. ;
Barnes, A. ;
Doyle, M. ;
Beal, J. ;
Jackson, K. A. ;
Stroika, S. ;
Tarr, C. ;
Kucerova, Z. ;
Lance, S. ;
Gould, L. H. ;
Wise, M. ;
Jackson, B. R. .
EPIDEMIOLOGY AND INFECTION, 2017, 145 (05) :848-856
[3]  
[Anonymous], MULT OUTBR LIST LINK
[4]  
[Anonymous], 2014, ANT RES GLOB REP SUR
[5]  
[Anonymous], 2018, Breakpoint tables for interpretation of MICs and zone diameters
[6]   Characterisation of persistent and sporadic Listeria monocytogenes strains by pulsed-field gel electrophoresis (PFGE) and amplified fragment length polymorphism (AFLP) [J].
Autio, T ;
Keto-Timonen, R ;
Lundén, J ;
Björkroth, J ;
Korkeala, H .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 2003, 26 (04) :539-545
[7]   Using agent-based modeling to compare corrective actions for Listeria contamination in produce packinghouses [J].
Barnett-Neefs, Cecil ;
Sullivan, Genevieve ;
Zoellner, Claire ;
Wiedmann, Martin ;
Ivanek, Renata .
PLOS ONE, 2022, 17 (03)
[8]   PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria [J].
Bayliss, Sion C. ;
Thorpe, Harry A. ;
Coyle, Nicola M. ;
Sheppard, Samuel K. ;
Feil, Edward J. .
GIGASCIENCE, 2019, 8 (10)
[9]  
Beye M., 2016, New Microbes and New Infections, V10, P87, DOI [10.1016/j.nmni.2016.01.005, 10.1016/j.nmni.2016.01.005]
[10]   The European Union One Health 2021 Zoonoses Report [J].
Boelaert, Frank ;
Amore, Giusi ;
Rizzi, Valentina ;
Stoicescu, Anca ;
Felicio, Maria Teresa Da Silva ;
Correia, Sandra Luisa De Almeida Florentino ;
Hempen, Michaela ;
Messens, Winy ;
Antoniou, Sotiria-Eleni ;
Baldinelli, Francesca ;
Broglia, Alessandro ;
Dhollander, Sofie ;
Kohnle, Lisa ;
Mur, Lina ;
Niskanen, Taina ;
Haussig, Joana ;
Cristea, Veronica ;
Scavia, Gaia ;
Altieri, Ilaria ;
Anniballi, Fabrizio ;
Bella, Antonino ;
Caccio, Simone ;
Casulli, Adriano ;
Ciervo, Alessandra ;
Delibato, Elisabetta ;
D'Errico, Michele Luca ;
Fernandez, Aurora Garcia ;
Morales, Maria Angeles Gomez ;
Iacoponi, Francesca ;
Knijn, Arnold ;
Lalle, Marco ;
Lucarelli, Claudia ;
Morabito, Stefano ;
Ortoffi, Marco ;
Pasquali, Paolo ;
Barbariol, Pierfrancesco ;
Riccardo, Flavia ;
Suffredini, Elisabetta ;
Tozzoli, Rosangela ;
Ventola, Eleonora ;
Villa, Laura ;
Angeloni, Giorgia ;
Barco, Lisa ;
Manca, Grazia ;
Capello, Katia ;
Cento, Giulia ;
Ciot, Laura ;
De Benedictis, Paola ;
Gagliazzo, Laura ;
Ishebabi, Annie .
EFSA JOURNAL, 2022, 20 (12)