The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts

被引:6
|
作者
Komatsuya, Keisuke [1 ]
Kikuchi, Norihito [1 ]
Hirabayashi, Tetsuya [1 ]
Kasahara, Kohji [1 ]
机构
[1] Tokyo Metropolitan Inst Med Sci, Lab Biomembrane, Tokyo 1568506, Japan
关键词
lipid rafts; gangliosides; GPI-anchored proteins; Src-family kinases; heterotrimeric G proteins; CELL-ADHESION MOLECULE; ENRICHED MEMBRANE SUBDOMAINS; GPI-ANCHORED PROTEINS; LIPID RAFTS; PLASMA-MEMBRANE; KINASE LYN; RAT-BRAIN; RECEPTOR; GANGLIOSIDES; DOMAINS;
D O I
10.3390/ijms24065566
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1 alpha, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Go alpha translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gs alpha, and L-type voltage-dependent calcium channels are discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts
    Komatsuya, Keisuke
    Kaneko, Kei
    Kasahara, Kohji
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (15) : 1 - 18
  • [2] The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems
    Nakayama, Hitoshi
    Nagafuku, Masakazu
    Suzuki, Akemi
    Iwabuchi, Kazuhisa
    Inokuchi, Jin-Ichi
    FEBS LETTERS, 2018, 592 (23): : 3921 - 3942
  • [3] Microdomains Associated to Lipid Rafts
    Pacheco, Jonathan
    Ramirez-Jarquin, Josue O.
    Vaca, Luis
    CALCIUM ENTRY PATHWAYS IN NON-EXCITABLE CELLS, 2016, 898 : 353 - 378
  • [4] The order of rafts - Conference on microdomains, lipid rafts and caveolae
    Zurzolo, C
    van Meer, G
    Mayor, S
    EMBO REPORTS, 2003, 4 (12) : 1117 - 1121
  • [5] LIPID RAFTS - MICRODOMAINS OF BIOLOGICAL MEMBRANES
    Kordowiak, Anna Maria
    Kordowiak, Slawomir, Jr.
    POSTEPY BIOLOGII KOMORKI, 2011, 38 (02) : 231 - 245
  • [6] Lipid rafts/caveolae as microdomains of calcium signaling
    Pani, Biswaranjan
    Singh, Brij B.
    CELL CALCIUM, 2009, 45 (06) : 625 - 633
  • [7] The roles of membrane microdomains (rafts) in T cell activation
    Horejsí, V
    IMMUNOLOGICAL REVIEWS, 2003, 191 (01) : 148 - 164
  • [8] Membrane microdomains and proteomics:: Lessons from tetraspanin microdomains and comparison with lipid rafts
    Le Naour, Francois
    Andre, Magali
    Boucheix, Claude
    Rubinstein, Eric
    PROTEOMICS, 2006, 6 (24) : 6447 - 6454
  • [9] Stabilities of Supramolecular Complex Structures in Lipid Rafts Microdomains
    Sun Run-Guang
    Zhang Jing
    Hao Chang-Chun
    Chen Ying-Ying
    Yang Qian
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2011, 32 (09): : 2071 - 2086
  • [10] Biophysical viewpoint of biomembrane: From microdomains to lipid rafts
    Wang, JX
    Zhang, XT
    Jiang, XH
    Li, YC
    Huang, YB
    Du, ZL
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2004, 31 (11) : 969 - 974