Diffusion approximation of an infinite-server queue under Markovian environment with rapid switching

被引:0
作者
Sen, Ankita [1 ]
Selvaraju, N. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
Markov-modulated non-homogeneous; Poisson process; Infinite-server queue; Time-dependent martingale problem; Martingale central limit theorem;
D O I
10.1016/j.spl.2023.109778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider an infinite-server queue with Markov-modulated non-homogeneous arrival and service processes. We adopt the martingale central limit theorem to derive the diffusion approximation of the centered and normalized queue length processes of the queueing system under suitable scaling. In particular, the diffusion approximation results in an Ornstein-Uhlenbeck process with time-varying coefficients and the associated covariance captures the stochastic and predictable variabilities simultaneously.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 13 条
  • [1] A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue
    Anderson, D.
    Blom, J.
    Mandjes, M.
    Thorsdottir, H.
    de Turck, K.
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (01) : 153 - 168
  • [2] Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework
    Ayanzi, Benjamin
    Taylor, Greg
    Wong, Bernard
    Xian, Alan
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 177 - 195
  • [3] Bremaud P., 1981, POINT PROCESSES QUEU
  • [4] M/M/∞ queues in semi-Markovian random environment
    D'Auria, B.
    [J]. QUEUEING SYSTEMS, 2008, 58 (03) : 221 - 237
  • [5] Ethier S. N., 2005, MARKOV PROCESSES CHA
  • [6] Jacod J., 2003, LIMIT THEOREMS STOCH
  • [7] Diffusion limits for networks of Markov-modulated infinite-server queues
    Jansen, H. M.
    Mandjes, M.
    De Turck, K.
    Wittevrongel, S.
    [J]. PERFORMANCE EVALUATION, 2019, 135
  • [8] Liptser R.S., 1989, THEORY MARTINGALES
  • [9] On the functional and local limit theorems for Markov modulated compound Poisson processes
    Pang, Guodong
    Zheng, Yi
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 129 : 131 - 140
  • [10] Rogers L. C. G., 2000, DIFFUSIONS MARKOV PR, V2, DOI 10.1017/CBO9781107590120