Deep learning to detect significant coronary artery disease from plain chest radiographs AI4CAD

被引:15
作者
D'Ancona, Giuseppe [1 ,2 ,12 ]
Massussi, Mauro [3 ,4 ]
Savardi, Mattia [5 ,6 ]
Signoroni, Alberto [5 ,6 ]
Di Bacco, Lorenzo [7 ,8 ]
Farina, Davide [5 ,9 ]
Metra, Marco [3 ,4 ]
Maroldi, Roberto [5 ,9 ]
Muneretto, Claudio [7 ,8 ]
Ince, Huseyin [1 ,2 ]
Costabile, Davide [10 ]
Murero, Monica [11 ]
Chizzola, Giuliano [3 ,4 ]
Curello, Salvatore [3 ,4 ]
Benussi, Stefano [7 ,8 ]
机构
[1] Vivantes Klinikum Urban & Neukolln, Dept Cardiol, Berlin, Germany
[2] Vivantes Klinikum Urban & Neukolln, Cardiovasc Clin Res Unit, Berlin, Germany
[3] Univ Brescia, ASST Spedali Civili, Cardiac Catheterizat Lab & Cardiol, Brescia, Italy
[4] Univ Brescia, Dept Med & Surg Specialties, Radiol Sci & Publ Hlth, Brescia, Italy
[5] Univ Brescia, Dept Med & Surg Specialties, Radiol Sci & Publ Hlth, Brescia, Italy
[6] Univ Brescia, Dept Informat Engn, Brescia, Italy
[7] Spedali Civili Brescia, Dept Cardiac Surg, Brescia, Italy
[8] Univ Brescia, Brescia, Italy
[9] Univ Brescia, ASST Spedali Civili, Radiol 2, Brescia, Italy
[10] Dept Informat Technol Spedali Civili Brescia, Brescia, Italy
[11] Univ Naples Federico II, AI4 Life & Soc Int Inst, Naples, Italy
[12] Vivantes Klinikum Urban, Dept Cardiol, Cardiovasc Clin Res Unit, Dieffenbachstr 1, D-10967 Berlin, Germany
关键词
Coronary Artery Disease; Chest Radiograph; Artificial Intelligence; Deep Learning; RULE;
D O I
10.1016/j.ijcard.2022.10.154
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The predictive role of chest radiographs in patients with suspected coronary artery disease (CAD) is underestimated and may benefit from artificial intelligence (AI) applications. Objectives: To train, test, and validate a deep learning (DL) solution for detecting significant CAD based on chest radiographs.Methods: Data of patients referred for angina and undergoing chest radiography and coronary angiography were analysed retrospectively. A deep convolutional neural network (DCNN) was designed to detect significant CAD from posteroanterior/anteroposterior chest radiographs. The DCNN was trained for severe CAD binary classifi-cation (absence/presence). Coronary angiography reports were the ground truth. Stenosis severity of >= 70% for non-left main vessels and >= 50% for left main defined severe CAD.Results: Information of 7728 patients was reviewed. Severe CAD was present in 4091 (53%). Patients were randomly divided for algorithm training (70%; n = 5454) and fine-tuning/model validation (10%; n = 773). Internal clinical validation (model testing) was performed with the remaining patients (20%; n = 1501). At binary logistic regression, DCNN prediction was the strongest severe CAD predictor (p < 0.0001; OR: 1.040; CI: 1.032-1.048). Using a high sensitivity operating cut-point, the DCNN had a sensitivity of 0.90 to detect signif-icant CAD (specificity 0.31; AUC 0.73; 95% CI DeLong, 0.69-0.76). Adding to the AI chest radiograph inter-pretation angina status improved the prediction (AUC 0.77; 95% CI DeLong, 0.74-0.80).Conclusion: AI-read chest radiographs could be used to pre-test significant CAD probability in patients referred for suspected angina. Further studies are required to externally validate our algorithm, develop a clinically appli-cable tool, and support CAD screening in broader settings.
引用
收藏
页码:435 / 441
页数:7
相关论文
共 32 条
  • [1] Comparison of Coronary Artery Disease Consortium 1 and 2 Scores and Duke Clinical Score to Predict Obstructive Coronary Disease by Invasive Coronary Angiography
    Almeida, Joao
    Fonseca, Paulo
    Dias, Tiago
    Ladeiras-Lopes, Ricardo
    Bettencourt, Nuno
    Ribeiro, Jose
    Gama, Vasco
    [J]. CLINICAL CARDIOLOGY, 2016, 39 (04) : 223 - 228
  • [2] Imaging in the Evaluation of Chest Pain in the Primary Care Setting, Part 1: Cardiovascular Etiologies
    Bader, Anna S.
    Rubinowitz, Ami N.
    Gange, Christopher P.
    Bader, Eric M.
    Cortopassi, Isabel O.
    [J]. AMERICAN JOURNAL OF MEDICINE, 2020, 133 (09) : 1033 - 1038
  • [3] A Comparison of the Updated Diamond-Forrester, CAD Consortium, and CONFIRM History-Based Risk Scores for Predicting Obstructive Coronary Artery Disease in Patients With Stable Chest Pain The SCOT-HEART Coronary CTA Cohort
    Baskaran, Lohendran
    Danad, Ibrahim
    Gransar, Heidi
    Hartaigh, Briain O.
    Schulman-Marcus, Joshua
    Lin, Fay Y.
    Pena, Jessica M.
    Hunter, Amanda
    Newby, David E.
    Adamson, Philip D.
    Min, James K.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) : 1392 - 1400
  • [4] Link between chronic obstructive pulmonary disease and coronary artery disease: Implication for clinical practice
    Boschetto, Piera
    Beghe, Bianca
    Fabbri, Leonardo M.
    Ceconi, Claudio
    [J]. RESPIROLOGY, 2012, 17 (03) : 422 - 431
  • [5] PadChest: A large chest x-ray image dataset with multi-label annotated reports
    Bustos, Aurelia
    Pertusa, Antonio
    Salinas, Jose-Maria
    de la Iglesia-Vaya, Maria
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 66
  • [6] Interstitial lung disease is a risk factor for ischaemic heart disease and myocardial infarction
    Clarson, Lorna Elise
    Bajpai, Ram
    Whittle, Rebecca
    Belcher, John
    Abdul Sultan, Alyshah
    Kwok, Chun Shing
    Welsh, Victoria
    Mamas, Mamas
    Mallen, Christian D.
    [J]. HEART, 2020, 106 (12) : 916 - 922
  • [7] Cohen J.P., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2111.00595
  • [8] Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review
    Dey, Damini
    Slomka, Piotr J.
    Leeson, Paul
    Comaniciu, Dorin
    Shrestha, Sirish
    Sengupta, Partho P.
    Marwick, Thomas H.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) : 1317 - 1335
  • [9] Estimating Pre-Test Probability of Coronary Artery Disease Battle of the Scores in an Evolving CAD Landscape
    Di Carli, Marcelo F.
    Gupta, Ankur
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (07) : 1401 - 1404
  • [10] A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension
    Genders, Tessa S. S.
    Steyerberg, Ewout W.
    Alkadhi, Hatem
    Leschka, Sebastian
    Desbiolles, Lotus
    Nieman, Koen
    Galema, Tjebbe W.
    Meijboom, W. Bob
    Mollet, Nico R.
    de Feyter, Pim J.
    Cademartiri, Filippo
    Maffei, Erica
    Dewey, Marc
    Zimmermann, Elke
    Laule, Michael
    Pugliese, Francesca
    Barbagallo, Rossella
    Sinitsyn, Valentin
    Bogaert, Jan
    Goetschalckx, Kaatje
    Schoepf, U. Joseph
    Rowe, Garrett W.
    Schuijf, Joanne D.
    Bax, Jeroen J.
    de Graaf, Fleur R.
    Knuuti, Juhani
    Kajander, Sami
    van Mieghem, Carlos A. G.
    Meijs, Matthijs F. L.
    Cramer, Maarten J.
    Gopalan, Deepa
    Feuchtner, Gudrun
    Friedrich, Guy
    Krestin, Gabriel P.
    Hunink, M. G. Myriam
    [J]. EUROPEAN HEART JOURNAL, 2011, 32 (11) : 1316 - 1330