Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery

被引:27
作者
Sanchez, Alejandro J. Da Silva [1 ,2 ]
Zhao, Kun [3 ,6 ]
Huayamares, Sebastian G. [3 ]
Hatit, Marine Z. C. [3 ]
Lokugamage, Melissa P. [3 ,7 ]
Loughrey, David [3 ]
Dobrowolski, Curtis [3 ]
Wang, Shuaishuai [4 ]
Kim, Hyejin [3 ]
Paunovska, Kalina [3 ]
Kuzminich, Yanina [1 ,5 ]
Dahlman, James E. [3 ]
机构
[1] Georgia Inst Technol, Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Chem Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[4] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
[5] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol, Minist Educ, Jinan 250012, Peoples R China
[7] Alloy Therapeut, Lexington, MA USA
关键词
mRNA; Lipid nanoparticles; Stereochemistry; IN-VIVO; NANOPARTICLES; NANOCARRIERS;
D O I
10.1016/j.jconrel.2022.11.037
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticles (LNPs) have delivered siRNA and mRNA drugs in humans, underscoring the potential impact of improving the therapeutic window of next-generation LNPs. To increase the LNP therapeutic window, we applied lessons from small-molecule chemistry to ionizable lipid design. Specifically, given that stereochemistry often influences small-molecule safety and pharmacokinetics, we hypothesized that the stereochemistry of lipids within an LNP would influence mRNA delivery. We tested this hypothesis in vivo using 128 novel LNPs that included stereopure derivatives of C12-200, an ionizable lipid that when formulated into LNPs delivers RNA in mice and non-human primates but is not used clinically due to its poor tolerability. We found that a novel C12200-S LNP delivered up to 2.8-fold and 6.1-fold more mRNA in vivo than its racemic and C12-200-R controls, respectively. To identify the potential causes leading to increased delivery, we quantified LNP biophysical traits and concluded that these did not change with stereochemistry. Instead, we found that stereopure LNPs were better tolerated than racemic LNPs in vivo. These data suggest that LNP-mediated mRNA delivery can be improved by designing LNPs to include stereopure ionizable lipids.
引用
收藏
页码:270 / 277
页数:8
相关论文
共 50 条
  • [41] Modulating the Nature of Ionizable Lipids and Number of Layers in Hyaluronan-Decorated Lipid Nanoparticles for In Vitro Delivery of RNAi
    Gibson, Victor Passos
    Tahiri, Houda
    Gilbert, Claudia
    Yang, Chun
    Phan, Quoc Thang
    Banquy, Xavier
    Hardy, Pierre
    PHARMACEUTICS, 2024, 16 (04)
  • [42] Unsaturated, Trialkyl Ionizable Lipids are Versatile Lipid-Nanoparticle Components for Therapeutic and Vaccine Applications
    Lam, Kieu
    Leung, Ada
    Martin, Alan
    Wood, Mark
    Schreiner, Petra
    Palmer, Lorne
    Daly, Owen
    Zhao, Wenchen
    McClintock, Kevin
    Heyes, James
    ADVANCED MATERIALS, 2023, 35 (15)
  • [43] In vitro and in vivo evaluation of clinically-approved ionizable cationic lipids shows divergent results between mRNA transfection and vaccine efficacy
    Escalona-Rayo, Oscar
    Zeng, Ye
    Knol, Renzo A.
    Kock, Thomas J. F.
    Aschmann, Dennis
    Slutter, Bram
    Kros, Alexander
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 165
  • [44] pH-Dependent Behavior of Ionizable Cationic Lipids in mRNA-Carrying Lipoplexes Investigated by Molecular Dynamics Simulations
    Settanni, Giovanni
    Brill, Wolfgang
    Haas, Heinrich
    Schmid, Friederike
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (12)
  • [45] Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells
    Patel, Savan K.
    Billingsley, Margaret M.
    Frazee, Caitlin
    Han, Xuexiang
    Swingle, Kelsey L.
    Qin, Jingya
    Alameh, Mohamad-Gabriel
    Wang, Karin
    Weissman, Drew
    Mitchell, Michael J.
    JOURNAL OF CONTROLLED RELEASE, 2022, 347 : 521 - 532
  • [46] Influence of ionizable lipid tail length on lipid nanoparticle delivery of mRNA of varying length
    Mrksich, Kaitlin
    Padilla, Marshall S.
    Joseph, Ryann A.
    Han, Emily L.
    Kim, Dongyoon
    Palanki, Rohan
    Xu, Junchao
    Mitchell, Michael J.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2024, 112 (09) : 1494 - 1505
  • [47] Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
    Guimaraes, Pedro P. G.
    Zhang, Rui
    Spektor, Roman
    Tan, Mingchee
    Chung, Amanda
    Billingsley, Margaret M.
    El-Mayta, Rakan
    Riley, Rachel S.
    Wang, Lili
    Wilson, James M.
    Mitchell, Michael J.
    JOURNAL OF CONTROLLED RELEASE, 2019, 316 : 404 - 417
  • [48] Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering
    Billingsley, Margaret M.
    Singh, Nathan
    Ravikumar, Pranali
    Zhang, Rui
    June, Carl H.
    Mitchell, Michael J.
    NANO LETTERS, 2020, 20 (03) : 1578 - 1589
  • [49] Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers
    Zhang, Dapeng
    Atochina-Vasserman, Elena N.
    Maurya, Devendra S.
    Liu, Matthew
    Xiao, Qi
    Lu, Juncheng
    Lauri, George
    Ona, Nathan
    Reagan, Erin K.
    Ni, Houping
    Weissman, Drew
    Percec, Virgil
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (43) : 17975 - 17982
  • [50] TLR7-Adjuvanted Ionizable Lipid Nanoparticles for mRNA Vaccine Delivery
    Misra, Bishal
    Hughes, Krystal A.
    Pentz, William H.
    Surface, Morgan
    Geldenhuys, Werner J.
    Bobbala, Sharan
    AAPS JOURNAL, 2025, 27 (04):