Fabrication strategies for metal-organic framework electrochemical biosensors and their applications

被引:88
作者
Fu, Xiaochen [1 ]
Ding, Bowen [1 ]
D'Alessandro, Deanna [1 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
MOFs; Application; Electrochemical sensors; REDUCED GRAPHENE OXIDE; NONENZYMATIC GLUCOSE DETECTION; GLASSY-CARBON ELECTRODE; HYDROGEN-PEROXIDE; FACILE SYNTHESIS; NI-MOF; ENZYME IMMOBILIZATION; ENERGY-STORAGE; SENSOR; COMPOSITES;
D O I
10.1016/j.ccr.2022.214814
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) are a class of functional porous three-dimensional framework mate-rials exhibiting unique chemical properties. Owing to the multifunctional nature of MOFs including their electroactive functionality and structural porosity, significant progress has been achieved in the advance-ment of MOF-based electrochemical sensors. This review focuses on innovations over the past decade in electrochemical sensor systems based on MOFs and their composites. The relationships between the elec-trode construction strategies and sensing performance are discussed, in addition to shortcomings and limitations in the applications of these sensors. On this basis, we discuss the future scope and propose further directions for MOF-based electrochemical sensors.(c) 2022 Published by Elsevier B.V.
引用
收藏
页数:21
相关论文
共 237 条
[1]   A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption [J].
Alhamami, Mays ;
Doan, Huu ;
Cheng, Chil-Hung .
MATERIALS, 2014, 7 (04) :3198-3250
[2]   Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis [J].
Ameloot, Rob ;
Stappers, Linda ;
Fransaer, Jan ;
Alaerts, Luc ;
Sels, Bert F. ;
De Vos, Dirk E. .
CHEMISTRY OF MATERIALS, 2009, 21 (13) :2580-2582
[3]   Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications [J].
An, Hongde ;
Li, Mingmin ;
Ga, Jia ;
Zhang, Zhenjie ;
Ma, Shengqian ;
Chen, Yao .
COORDINATION CHEMISTRY REVIEWS, 2019, 384 :90-106
[4]   Metal organic frameworks in electrochemical and optical sensing platforms: a review [J].
Anik, Ulku ;
Timur, Suna ;
Dursun, Zekerya .
MICROCHIMICA ACTA, 2019, 186 (03)
[5]   Electrochemically Mediated Syntheses of Titanium(III)-Based Metal-Organic Frameworks [J].
Antonio, Alexandra M. ;
Rosenthal, Joel ;
Bloch, Eric D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (29) :11383-11387
[6]   Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid [J].
Arul, P. ;
Gowthaman, N. S. K. ;
John, S. Abraham ;
Tominaga, Masato .
ELECTROCHIMICA ACTA, 2020, 354
[7]  
Bage N., 2022, SENSORS INT, V3
[8]   Highly effective ammonia removal in a series of Bronsted acidic porous polymers: investigation of chemical and structural variations [J].
Barin, Gokhan ;
Peterson, Gregory W. ;
Crocella, Valentina ;
Xu, Jun ;
Colwell, Kristen A. ;
Nandy, Aditya ;
Reimer, Jeffrey A. ;
Bordiga, Silvia ;
Long, Jeffrey R. .
CHEMICAL SCIENCE, 2017, 8 (06) :4399-4409
[9]   An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof [J].
Bhardwaj, Sanjeev K. ;
Bhardwaj, Neha ;
Kaur, Rajnish ;
Mehta, Jyotsana ;
Sharma, Amit L. ;
Kim, Ki-Hyun ;
Deep, Akash .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (31) :14992-15009
[10]   Label-Free Electrochemical Immunosensor for Ultrasensitive Detection of Carbohydrate Antigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT [J].
Biswas, Sudip ;
Lan, Qingchun ;
Xie, Yao ;
Sun, Xin ;
Wang, Yang .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (02) :3295-3302