Asymptotic behavior and monotonicity of radial eigenvalues for the p-Laplacian

被引:2
作者
Kajikiya, Ryuji [1 ]
Tanaka, Mieko [2 ]
Tanaka, Satoshi [3 ]
机构
[1] Osaka Electrocommun Univ, Ctr Phys & Math, Neyagawa, Osaka 5728530, Japan
[2] Tokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjyuku Ku, Tokyo 1628601, Japan
[3] Tohoku Univ, Math Inst, Aoba 6-3 Aoba Ku, Sendai 9808578, Japan
关键词
p-Laplacian; Eigenvalue; Radial eigenfunction; Asymptotic behavior; Monotonicity; PRINCIPAL EIGENVALUE; OPERATOR;
D O I
10.1016/j.jde.2024.01.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the radial eigenvalues of the p-Laplacian in a domain ⠂ with the Dirichlet boundary condition, where ⠂ is a ball or an annulus. For the k-th eigenvalue lambda k(p, ⠂), we study the asymptotic behavior of lambda k(p, ⠂) as p -> 1 + 0 or p -> infinity, and prove the monotonicity and non-monotonicity of lambda k(p, ⠂) with respect to p. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:496 / 531
页数:36
相关论文
共 24 条
[21]  
De Lis JCS, 2021, INDIANA U MATH J, V70, P1395
[22]   On a criterion for discrete or continuous spectrum of p-Laplace eigenvalue problems with singular sign-changing weights [J].
Sim, Inbo ;
Kajikiya, Ryuji ;
Lee, Yong-Hoon .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3515-3534
[23]  
Takac P, 2006, Handbook of Differential Equations, Stationary Partial Differential Equations, V1, P385