Asymptotic behavior and monotonicity of radial eigenvalues for the p-Laplacian

被引:2
作者
Kajikiya, Ryuji [1 ]
Tanaka, Mieko [2 ]
Tanaka, Satoshi [3 ]
机构
[1] Osaka Electrocommun Univ, Ctr Phys & Math, Neyagawa, Osaka 5728530, Japan
[2] Tokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjyuku Ku, Tokyo 1628601, Japan
[3] Tohoku Univ, Math Inst, Aoba 6-3 Aoba Ku, Sendai 9808578, Japan
关键词
p-Laplacian; Eigenvalue; Radial eigenfunction; Asymptotic behavior; Monotonicity; PRINCIPAL EIGENVALUE; OPERATOR;
D O I
10.1016/j.jde.2024.01.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the radial eigenvalues of the p-Laplacian in a domain ⠂ with the Dirichlet boundary condition, where ⠂ is a ball or an annulus. For the k-th eigenvalue lambda k(p, ⠂), we study the asymptotic behavior of lambda k(p, ⠂) as p -> 1 + 0 or p -> infinity, and prove the monotonicity and non-monotonicity of lambda k(p, ⠂) with respect to p. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:496 / 531
页数:36
相关论文
共 24 条
  • [1] Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
  • [2] Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1
    Benedikt, Jiri
    Drabek, Pavel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 : 23 - 29
  • [3] On the higher Cheeger problem
    Bobkov, Vladimir
    Parini, Enea
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 97 : 575 - 600
  • [4] On positive solutions for (p, q)-Laplace equations with two parameters
    Bobkov, Vladimir
    Tanaka, Mieko
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3277 - 3301
  • [5] On the monotonicity of the principal frequency of the p-Laplacian
    Bocea, Marian
    Mihailescu, Mihai
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (01) : 147 - 152
  • [6] On the p-torsion functions of an annulus
    Bueno, H.
    Ercole, G.
    [J]. ASYMPTOTIC ANALYSIS, 2015, 92 (3-4) : 235 - 247
  • [7] Champion T, 2007, P ROY SOC EDINB A, V137, P1179
  • [8] Dosly O., 2005, North-Holland Mathematics Studies, V202
  • [9] Fridman V., 2003, Comment. Math. Univ. Carol., V44, P659
  • [10] Fukagai N., 1999, Differ. Integral Equ., V12, P183