Forcing 2-Metric Dimension in the Join and Corona of Graphs

被引:1
作者
Managbanag, Dennis B. [1 ]
Rara, Helen M. [2 ]
机构
[1] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[2] Mindanao State Univ, Premier Res Inst Sci & Math, Iligan Inst Technol, Coll Sci & Math,Dept Math & Stat,Ctr Graph Theory, Iligan 9200, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 02期
关键词
2-resolving set; 2-metric basis; 2-metric dimension; forcing subsets; corona;
D O I
10.29020/nybg.ejpam.v16i2.4750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study deals with the forcing subsets of 2-metric basis in graphs. Some main results generated in this study include the characterization of a 2-metric basis in graphs and the characterization of the forcing subsets of these 2-metric bases. These characterizations are used to determine values for the forcing 2-metric dimension of graphs resulting from some binary operations such as the join and corona of graphs.
引用
收藏
页码:1068 / 1083
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1988, J MATH PHYS SCI, V22, P445
[2]   ERROR-CORRECTING CODES FROM k-RESOLVING SETS [J].
Bailey, Robert F. ;
Yero, Ismael G. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) :341-355
[3]   The Metric Dimension of Metric Spaces [J].
Bau, Sheng ;
Beardon, Alan F. .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (02) :295-305
[4]  
Blumenthal LM, 1953, THEORY APPL DISTANCE
[5]   On 2-Resolving Sets in the Join and Corona of Graphs [J].
Cabaro, Jean ;
Rara, Helen .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (03) :773-782
[6]  
Chartrand G., 2001, MATH BOHEM, V126, P711
[7]   GRAPHICAL PROPERTIES OF POLYHEXES - PERFECT MATCHING VECTOR AND FORCING [J].
HARARY, F ;
KLEIN, DJ ;
ZIVKOVIC, TP .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (03) :295-306
[8]  
Harary F., 1976, ARS COMBINATORIA, V2, P191
[9]   The metric dimension of geometric spaces [J].
Heydarpour, Majid ;
Maghsoudi, Saeid .
TOPOLOGY AND ITS APPLICATIONS, 2014, 178 :230-235
[10]   INNATE DEGREE OF FREEDOM OF A GRAPH [J].
KLEIN, DJ ;
RANDIC, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1987, 8 (04) :516-521