COMPUTING POINTS ON BIELLIPTIC MODULAR CURVES OVER FIXED QUADRATIC FIELDS

被引:0
作者
Michaud-Jacobs, Philippe [1 ]
机构
[1] Univ Warwick, Coventry CV4 7AL, England
基金
英国工程与自然科学研究理事会;
关键词
modular curve; quadratic point; elliptic curve; Mordell-Weil sieve;
D O I
10.1017/S0004972723000333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Mordell-Weil sieve that can be used to compute points on certain bielliptic modular curves V X-0(N) over fixed quadratic fields. We study X-0(N)(Q( vd)) for N ? {53, 61, 65, 79, 83, 89, 101, 131} and |d| < 100.
引用
收藏
页码:6 / 13
页数:8
相关论文
共 50 条
[41]   Integral points on the modular curves X0(p) [J].
Cai, Yulin .
JOURNAL OF NUMBER THEORY, 2021, 221 :211-221
[42]   On the independence of Heegner points associated to distinct quadratic imaginary fields [J].
Rosen, Michael ;
Silverman, Joseph H. .
JOURNAL OF NUMBER THEORY, 2007, 127 (01) :10-36
[43]   Equations and rational points of the modular curves X0+ (p) [J].
Mercuri, Pietro .
RAMANUJAN JOURNAL, 2018, 47 (02) :291-308
[44]   Bounding the j-invariant of integral points on certain modular curves [J].
Sha, Min .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) :1545-1551
[45]   Infinite families of elliptic curves over Dihedral quartic number fields [J].
Jeon, Daeyeol ;
Kim, Chang Heon ;
Lee, Yoonjin .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :115-122
[46]   Torsion of rational elliptic curves over different types of cubic fields [J].
Jeon, Daeyeol ;
Schweizer, Andreas .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (06) :1307-1323
[47]   An Application of the Arithmetic of Elliptic Curves to the Class Number Problem for Quadratic Fields [J].
Iizuka, Yoshichika ;
Konomi, Yutaka ;
Nakano, Shin .
TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (01) :33-47
[48]   Five squares in arithmetic progression over quadratic fields [J].
Gonzalez-Jimenez, Enrique ;
Xarles, Xavier .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (04) :1211-1238
[49]   On CM abelian varieties over imaginary quadratic fields [J].
Tonghai Yang .
Mathematische Annalen, 2004, 329 :87-117
[50]   Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants [J].
Fedorov, G. V. .
MATHEMATICAL NOTES, 2023, 114 (5-6) :1195-1211