A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network

被引:37
作者
Zhang, Hengjie [1 ,2 ,3 ]
Jiang, Biyi [1 ,2 ,4 ]
Cheng, Chuantong [2 ,3 ]
Huang, Beiju [3 ]
Zhang, Huan [2 ,3 ]
Chen, Run [2 ]
Xu, Jiayi [1 ]
Huang, Yulong [2 ,3 ]
Chen, Hongda [2 ,3 ]
Pei, Weihua [2 ,3 ]
Chai, Yang [4 ]
Zhou, Feichi [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518000, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
self-rectifying synaptic memristor array; ultrahigh weight potentiation linearity; self-organizing-map (SOM) neural network; orientation recognition; image background filtering; LARGE-SCALE; CLASSIFICATION; LEAKAGE; SCHEME; DEVICE; SENSOR; RATIO;
D O I
10.1021/acs.nanolett.2c03624
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-terminal self-rectifying (SR)-synaptic memristors are preeminent candidates for high-density and efficient neuromorphic computing, especially for future three-dimensional integrated systems, which can self-suppress the sneak path current in crossbar arrays. However, SR-synaptic memristors face the critical challenges of nonlinear weight potentiation and steep depression, hindering their application in conventional artificial neural networks (ANNs). Here, a SR-synaptic memristor (Pt/NiOx/ WO3-x:Ti/W) and cross-point array with sneak path current suppression features and ultrahigh-weight potentiation linearity up to 0.9997 are introduced. The image contrast enhancement and background filtering are demonstrated on the basis of the device array. Moreover, an unsupervised self-organizing map (SOM) neural network is first developed for orientation recognition with high recognition accuracy (0.98) and training efficiency and high resilience toward both noises and steep synaptic depression. These results solve the challenges of SR memristors in the conventional ANN, extending the possibilities of large-scale oxide SR-synaptic arrays for high-density, efficient, and accurate neuromorphic computing.
引用
收藏
页码:3107 / 3115
页数:9
相关论文
共 45 条
  • [1] An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors
    Cao, Yuan
    Pan, Xiaofang
    Zhao, Xiaojin
    Wu, Huisi
    [J]. SENSORS, 2014, 14 (12): : 24132 - 24145
  • [2] Improving linearity by introducing Al in HfO2 as a memristor synapse device
    Chandrasekaran, Sridhar
    Simanjuntak, Firman Mangasa
    Saminathan, R.
    Panda, Debashis
    Tseng, Tseung-Yuen
    [J]. NANOTECHNOLOGY, 2019, 30 (44)
  • [3] Design of a CMOS Image Sensor with Bi-Directional Gamma-Corrected Digital-Correlated Double Sampling
    Cho, Jaehee
    Choo, Hyunseon
    Lee, Suhyeon
    Yoon, Seungju
    Kam, Gyuwon
    Kim, Sooyoun
    [J]. SENSORS, 2023, 23 (02)
  • [4] A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems
    Choi, Sanghyeon
    Jang, Seonghoon
    Moon, Jung-Hwan
    Kim, Jong Chan
    Jeong, Hu Young
    Jang, Peonghwa
    Lee, Kyung-Jin
    Wang, Gunuk
    [J]. NPG ASIA MATERIALS, 2018, 10 : 1097 - 1106
  • [5] Crossbar array of selector-less TaOx/TiO2 bilayer RRAM
    Chou, Chun-Tse
    Hudec, Boris
    Hsu, Chung-Wei
    Lai, Wei-Li
    Chang, Chih-Cheng
    Hou, Tuo-Hung
    [J]. MICROELECTRONICS RELIABILITY, 2015, 55 (11) : 2220 - 2223
  • [6] Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4
    Dai, Yitao
    Li, Chao
    Shen, Yanbin
    Lim, Tingbin
    Xu, Jian
    Li, Yongwang
    Niemantsverdriet, Hans
    Besenbacher, Flemming
    Lock, Nina
    Su, Ren
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [7] Tunable work function of a WOx buffer layer for enhanced photocarrier collection of pin-type amorphous silicon solar cells
    Fang, Liang
    Baik, Seung Jae
    Kim, Jeong Won
    Kang, Sang Jung
    Seo, Jung Won
    Jeon, Jin-Wan
    Kim, Yoon Hak
    Lim, Koeng Su
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
  • [8] Li-Ion Synaptic Transistor for Low Power Analog Computing
    Fuller, Elliot J.
    El Gabaly, Farid
    Leonard, Franois
    Agarwal, Sapan
    Plimpton, Steven J.
    Jacobs-Gedrim, Robin B.
    James, Conrad D.
    Marinella, Matthew J.
    Talin, A. Alec
    [J]. ADVANCED MATERIALS, 2017, 29 (04)
  • [9] Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing
    Hou, Ya-Xin
    Li, Yi
    Zhang, Zhi-Cheng
    Li, Jia-Qiang
    Qi, De-Han
    Chen, Xu-Dong
    Wang, Jing-Jing
    Yao, Bin-Wei
    Yu, Mei-Xi
    Lu, Tong-Bu
    Zhang, Jin
    [J]. ACS NANO, 2021, 15 (01) : 1497 - 1508
  • [10] Bipolar Ni/TiO2/HfO2/Ni RRAM With Multilevel States and Self-Rectifying Characteristics
    Hsu, Chung-Wei
    Hou, Tuo-Hung
    Chen, Mei-Chin
    Wang, I-Ting
    Lo, Chun-Li
    [J]. IEEE ELECTRON DEVICE LETTERS, 2013, 34 (07) : 885 - 887