The Future of Supercells in the United States

被引:34
作者
Ashley, Walker S. [1 ]
Haberlie, Alex M. [1 ]
Gensini, Vittorio A. [1 ]
机构
[1] Northern Illinois Univ, Dept Earth Atmosphere & Environm, De Kalb, IL 60115 USA
基金
美国国家科学基金会;
关键词
Hail; Severe storms; Supercells; Tornadoes; Climate change; Climate models; SIGNIFICANT SEVERE THUNDERSTORMS; HAZARDOUS CONVECTIVE WEATHER; LOW-LEVEL MESOVORTICES; PART I; CLIMATE-CHANGE; SQUALL LINES; GREAT-PLAINS; BOW ECHOES; HIGH-SHEAR; TORNADO;
D O I
10.1175/BAMS-D-22-0027.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A supercell is a distinct type of intense, long-lived thunderstorm that is defined by its quasi-steady, rotating updraft. Supercells are responsible for most damaging hail and deadly tornadoes, causing billions of dollars in losses and hundreds of casualties annually. This research uses high-resolution, convection-permitting climate simulations across 15-yr epochs that span the twenty-first century to assess how supercells may change across the United States. Specifically, the study explores how late-twentieth-century supercell populations compare with their late-twenty-first-century counterparts for two-intermediate and pessimistic-anthropogenic climate change trajectories. An algorithm identifies, segments, and tracks supercells in the simulation output using updraft helicity, which measures the magnitude of corkscrew flow through a storm's updraft and is a common proxy for supercells. Results reveal that supercells will be more frequent and intense in future climates, with robust spatiotemporal shifts in their populations. Supercells are projected to become more numerous in regions of the eastern United States, while decreasing in frequency in portions of the Great Plains. Supercell risk is expected to escalate outside of the traditional severe storm season, with supercells and their perils likely to increase in late winter and early spring months under both emissions scenarios. Conversely, the latter part of the severe storm season may be curtailed, with supercells expected to decrease midsummer through early fall. These results suggest the potential for more significant tornadoes, hail, and extreme rainfall that, when combined with an increasingly vulnerable society, may produce disastrous consequences.
引用
收藏
页码:E1 / E21
页数:21
相关论文
共 122 条
[1]  
Allen JT., 2018, Oxford Research Encyclopedia of Climate Science, DOI [10.1093/acrefore/9780190228620.013.62, DOI 10.1093/ACREFORE/9780190228620.013.62]
[2]   Tornado Fatalities: An Environmental Perspective [J].
Anderson-Frey, Alexandra K. ;
Brooks, Harold .
WEATHER AND FORECASTING, 2019, 34 (06) :1999-2015
[3]  
[Anonymous], 2011, Electron. J. Severe Storms Meteor.
[4]   Vulnerability due to Nocturnal Tornadoes [J].
Ashley, Walker S. ;
Krmenec, Andrew J. ;
Schwantes, Rick .
WEATHER AND FORECASTING, 2008, 23 (05) :795-807
[5]   Spatial and temporal analysis of tornado fatalities in the United States: 1880-2005 [J].
Ashley, Walker S. .
WEATHER AND FORECASTING, 2007, 22 (06) :1214-1228
[6]   A Climatology of Quasi-Linear Convective Systems and Their Hazards in the United States [J].
Ashley, Walker S. ;
Haberlie, Alex M. ;
Strohm, Jacob .
WEATHER AND FORECASTING, 2019, 34 (06) :1605-1631
[7]   RECIPE FOR DISASTER How the Dynamic Ingredients of Risk and Exposure Are Changing the Tornado Disaster Landscape [J].
Ashley, Walker S. ;
Strader, Stephen M. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (05) :767-786
[8]  
Brimelow JC, 2017, NAT CLIM CHANGE, V7, P516, DOI [10.1038/nclimate3321, 10.1038/NCLIMATE3321]
[9]   Severe thunderstorms and climate change [J].
Brooks, H. E. .
ATMOSPHERIC RESEARCH, 2013, 123 :129-138
[10]  
Brooks H.E., 2019, METEOROLOGICAL MONOG, V59, P18