One model to unite them all: Personalized federated learning of multi-contrast MRI synthesis

被引:13
作者
Dalmaz, Onat [1 ,2 ]
Mirza, Muhammad U. [1 ,2 ]
Elmas, Gokberk [1 ,2 ]
Ozbey, Muzaffer [1 ,2 ]
Dar, Salman U. H. [1 ,2 ]
Ceyani, Emir [3 ]
Oguz, Kader K. [4 ]
Avestimehr, Salman [3 ]
Cukur, Tolga [1 ,2 ,5 ]
机构
[1] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye
[2] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, TR-06800 Ankara, Turkiye
[3] Univ Southern Calif, Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
[4] Univ Calif Sacramento, Davis Med Ctr, Dept Radiol, Sacramento, CA 95817 USA
[5] Bilkent Univ, Neurosci Program, TR-06800 Ankara, Turkiye
关键词
Federated learning; Personalization; Heterogeneity; MRI; Synthesis; Translation; IMAGE SYNTHESIS; RANDOM FOREST;
D O I
10.1016/j.media.2024.103121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Curation of large, diverse MRI datasets via multi-institutional collaborations can help improve learningof generalizable synthesis models that reliably translate source- onto target-contrast images. To facilitatecollaborations, federated learning (FL) adopts decentralized model training while mitigating privacy concernsby avoiding sharing of imaging data. However, conventional FL methods can be impaired by the inherentheterogeneity in the data distribution, with domain shifts evident within and across imaging sites. Here weintroduce the first personalized FL method for MRI Synthesis (pFLSynth) that improves reliability against dataheterogeneity via model specialization to individual sites and synthesis tasks (i.e., source-target contrasts).To do this, pFLSynth leverages an adversarial model equipped with novel personalization blocks that controlthe statistics of generated feature maps across the spatial/channel dimensions, given latent variables specificto sites and tasks. To further promote communication efficiency and site specialization, partial networkaggregation is employed over later generator stages while earlier generator stages and the discriminatorare trained locally. As such, pFLSynth enables multi-task training of multi-site synthesis models with highgeneralization performance across sites and tasks. Comprehensive experiments demonstrate the superiorperformance and reliability of pFLSynth in MRI synthesis against prior federated methods
引用
收藏
页数:19
相关论文
共 115 条
[1]   Missing data [J].
Altman, Douglas G. ;
Bland, J. Martin .
BRITISH MEDICAL JOURNAL, 2007, 334 (7590) :424-424
[2]  
Armanious K., MedGAN: Medical image translation using GANs. Comput. Med.Imaging Graph
[3]  
Atlas S, 2009, LWW medicalbook collection.
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]  
Beers A, 2018, Arxiv, DOI arXiv:1805.03144
[6]  
Billot B., Proc. Natl.Acad. Sci., V120, P1
[7]   SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining [J].
Billot, Benjamin ;
Greve, Douglas N. ;
Puonti, Oula ;
Thielscher, Axel ;
Van Leemput, Koen ;
Fischl, Bruce ;
Dalca, Adrian V. ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE ANALYSIS, 2023, 86
[8]   Pseudo-healthy Image Synthesis for White Matter Lesion Segmentation [J].
Bowles, Christopher ;
Qin, Chen ;
Ledig, Christian ;
Guerrero, Ricardo ;
Gunn, Roger ;
Hammers, Alexander ;
Sakka, Eleni ;
Dickie, David Alexander ;
Hernandez, Maria Valdes ;
Royle, Natalie ;
Wardlaw, Joanna ;
Rhodius-Meester, Hanneke ;
Tijms, Betty ;
Lemstra, Afina W. ;
van der Flier, Wiesje ;
Barkhof, Frederik ;
Scheltens, Philip ;
Rueckert, Daniel .
SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, SASHIMI 2016, 2016, 9968 :87-96
[9]   Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm [J].
Buda, Mateusz ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 :218-225
[10]   Vessel tortuosity and brain tumor malignancy: A blinded study [J].
Bullitt, E ;
Zeng, DL ;
Gerig, G ;
Aylward, S ;
Joshi, S ;
Smith, JK ;
Lin, WL ;
Ewend, MG .
ACADEMIC RADIOLOGY, 2005, 12 (10) :1232-1240