Preoperative 18F-FDG PET/CT and CT radiomics for identifying aggressive histopathological subtypes in early stage lung adenocarcinoma

被引:11
作者
Choi, Wookjin [1 ,4 ]
Liu, Chia-Ju [2 ]
Alam, Sadegh Riyahi [1 ]
Oh, Jung Hun [1 ]
Vaghjiani, Raj [3 ]
Humm, John [1 ]
Weber, Wolfgang [2 ]
Adusumilli, Prasad S. [3 ]
Deasy, Joseph O. [1 ]
Lu, Wei [1 ,5 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10065 USA
[4] Thomas Jefferson Univ, Dept Radiat Oncol, Philadelphia, PA 19107 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 500 Westchester Ave, West Harrison, NY 10604 USA
关键词
Lung adenocarcinoma; Non-small cell lung cancer; Histopathology; Radiomics; PET; CT; Preoperative; Aggressive subtypes; Surgical planning; LYMPH-NODE METASTASIS; GLASS NODULES DIFFERENTIATION; INTERNATIONAL-ASSOCIATION; HISTOLOGIC SUBTYPE; LIMITED RESECTION; PROGNOSTIC STRATIFICATION; PULMONARY ADENOCARCINOMA; MICROPAPILLARY PATTERN; PATHOLOGICAL RESPONSE; INDEPENDENT PREDICTOR;
D O I
10.1016/j.csbj.2023.11.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lung adenocarcinoma (ADC) is the most common non-small cell lung cancer. Surgical resection is the primary treatment for early-stage lung ADC while lung-sparing surgery is an alternative for non-aggressive cases. Identifying histopathologic subtypes before surgery helps determine the optimal surgical approach. Predominantly solid or micropapillary (MIP) subtypes are aggressive and associated with a higher likelihood of recurrence and metastasis and lower survival rates. This study aims to non-invasively identify these aggressive subtypes using preoperative 18F-FDG PET/CT and diagnostic CT radiomics analysis. We retrospectively studied 119 patients with stage I lung ADC and tumors <= 2 cm, where 23 had aggressive subtypes (18 solid and 5 MIPs). Out of 214 radiomic features from the PET/CT and CT scans and 14 clinical parameters, 78 significant features (3 CT and 75 PET features) were identified through univariate analysis and hierarchical clustering with minimized feature collinearity. A combination of Support Vector Machine classifier and Least Absolute Shrinkage and Selection Operator built predictive models. Ten iterations of 10-fold cross-validation (10 x10-fold CV) evaluated the model. A pair of texture feature (PET GLCM Correlation) and shape feature (CT Sphericity) emerged as the best predictor. The radiomics model significantly outperformed the conventional predictor SUVmax (accuracy: 83.5% vs. 74.7%, p = 9e-9) and identified aggressive subtypes by evaluating FDG uptake in the tumor and tumor shape. It also demonstrated a high negative predictive value of 95.6% compared to SUVmax (88.2%, p = 2e-10). The proposed radiomics approach could reduce unnecessary extensive surgeries for non-aggressive subtype patients, improving surgical decision-making for early-stage lung ADC patients.
引用
收藏
页码:5601 / 5608
页数:8
相关论文
共 71 条
[1]   Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer [J].
Altorki, Nasser ;
Wang, Xiaofei ;
Kozono, David ;
Watt, Colleen ;
Landrenau, Rodney ;
Wigle, Dennis ;
Port, Jeffrey ;
Jones, David R. ;
Conti, Massimo ;
Ashrafi, Ahmad S. ;
Liberman, Moishe ;
Yasufuku, Kazuhiro ;
Yang, Stephen ;
Mitchell, John D. ;
Pass, Harvey ;
Keenan, Robert ;
Bauer, Thomas ;
Miller, Daniel ;
Kohman, Leslie J. ;
Stinchcombe, Thomas E. ;
Vokes, Everett .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (06) :489-498
[2]   TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES [J].
AMADASUN, M ;
KING, R .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05) :1264-1274
[3]   Radiologic Implications of the 2011 Classification of Adenocarcinoma of the Lung [J].
Austin, John H. M. ;
Garg, Kavita ;
Aberle, Denise ;
Yankelevitz, David ;
Kuriyama, Keiko ;
Lee, Hyun-Ju ;
Brambilla, Elisabeth ;
Travis, William D. .
RADIOLOGY, 2013, 266 (01) :62-71
[4]   Procedure-Specific Risk Prediction for Recurrence in Patients Undergoing Lobectomy or Sublobar Resection for Small (≤2 cm) Lung Adenocarcinoma: An International Cohort Analysis [J].
Bains, Sarina ;
Eguchi, Takashi ;
Warth, Arne ;
Yeh, Yi-Chen ;
Nitadori, Jun-ichi ;
Woo, Kaitlin M. ;
Chou, Teh-Ying ;
Dienemann, Hendrik ;
Muley, Thomas ;
Nakajima, Jun ;
Shinozaki-Ushiku, Aya ;
Wu, Yu-Chung ;
Lu, Shaohua ;
Kadota, Kyuichi ;
Jones, David R. ;
Travis, William D. ;
Tan, Kay See ;
Adusumilli, Prasad S. .
JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (01) :72-86
[5]   Predictive risk factors for lymph node metastasis in patients with small size non-small cell lung cancer [J].
Bao, Feichao ;
Yuan, Ping ;
Yuan, Xiaoshuai ;
Lv, Xiayi ;
Wang, Zhitian ;
Hu, Jian .
JOURNAL OF THORACIC DISEASE, 2014, 6 (12) :1697-1703
[6]   Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges [J].
Bashir, Usman ;
Siddique, Muhammad Musib ;
Mclean, Emma ;
Goh, Vicky ;
Cook, Gary J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (03) :534-543
[7]   Sublobar resection for stage IA non-small cell lung cancer [J].
Berfield, Kathleen S. ;
Wood, Douglas E. .
JOURNAL OF THORACIC DISEASE, 2017, 9 :S208-S210
[8]   PET/CT Radiomics in Lung Cancer: An Overview [J].
Bianconi, Francesco ;
Palumbo, Isabella ;
Spanu, Angela ;
Nuvoli, Susanna ;
Fravolini, Mario Luca ;
Palumbo, Barbara .
APPLIED SCIENCES-BASEL, 2020, 10 (05)
[9]   PET quantification with a histogram derived total activity metric: Superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients [J].
Burger, Irene A. ;
Vargas, Hebert Alberto ;
Apte, Aditya ;
Beattie, Bradley J. ;
Humm, John L. ;
Gonen, Mithat ;
Larson, Steven M. ;
Schmidtlein, C. Ross .
NUCLEAR MEDICINE AND BIOLOGY, 2014, 41 (05) :410-418
[10]  
CAHAN WG, 1960, J THORAC CARDIOV SUR, V39, P555