Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation

被引:8
作者
Setti, Paulo T. [1 ,2 ]
Tabibi, Sajad [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Esch sur Alzette, Luxembourg
[2] Univ Luxembourg, Fac Sci Technol & Med, E04 0415110,Maison Nombre 6,Ave Fonte, L-4364 Esch sur Alzette, Luxembourg
关键词
GPS; GNSS; GNSS-Reflectometry; GNSS-R; Spire Global; CYGNSS; soil moisture; surface reflectivity; GRIDDED DATA;
D O I
10.1080/01431161.2023.2270108
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has emerged as a pivotal tool with different land applications, prominently encompassing soil moisture estimation. In contrast to conventional radiometer satellites commonly used for this purpose, GNSS-R offers higher spatiotemporal coverage while maintaining cost-effectiveness. The potential of using Global Positioning System (GPS) reflections measured by the Cyclone Global Navigation Satellite System (CYGNSS) mission to retrieve soil moisture has been previously demonstrated. In 2019, Spire Global Inc. launched their first GNSS-R satellites, which now comprise a constellation of four CubeSats. These satellites track reflections from multi-constellation, encompassing GPS, Galileo, BeiDou Navigation Satellite System (BDS), and Quasi-Zenith Satellite System (QZSS). In this study, an analysis and validation of Spire GNSS-R L1B surface reflectivity for soil moisture retrieval within east Australia during an eight-month period in 2021 is presented. A comparison of the estimated Spire surface reflectivity to that of CYGNSS is performed, unveiling analogous behavioural patterns and biases across both missions. Soil moisture is estimated using observations from Spire GPS-only, Spire multi-constellation, and CYGNSS. The Soil Moisture Active and Passive (SMAP) retrievals are used as the reference, presuming a linear relationship between changes in soil moisture and changes in reflectivity. Our results indicate that the Spire GNSS-R mission can detect variations in soil moisture with a performance comparable to that of CYGNSS. A median unbiased root-mean-square difference (ubRMSD) of 0.062 m3.m-3 is found for both Spire GPS and multi-constellation when using 9-km products and SMAP as the reference.
引用
收藏
页码:6422 / 6441
页数:20
相关论文
共 46 条
[1]  
[Anonymous], 2020, CYGNSS level 1 science data record version 3.0. ver. 3.0, DOI [10.5067/CYGNS-L1X30, DOI 10.5067/CYGNS-L1X30]
[2]   Soil Moisture for Hydrological Applications: Open Questions and New Opportunities [J].
Brocca, Luca ;
Ciabatta, Luca ;
Massari, Christian ;
Camici, Stefania ;
Tarpanelli, Angelica .
WATER, 2017, 9 (02)
[3]   EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets [J].
Brodzik, Mary J. ;
Billingsley, Brendan ;
Haran, Terry ;
Raup, Bruce ;
Savoie, Matthew H. .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2012, 1 (01) :32-45
[4]   Ice sheet height retrievals from Spire grazing angle GNSS-R [J].
Buendia, Raquel N. ;
Tabibi, Sajad ;
Talpe, Matthieu ;
Otosaka, Ines .
REMOTE SENSING OF ENVIRONMENT, 2023, 297
[5]   PRELIMINARY GNSS-R ALTIMETRY IN THE HUDSON BAY BASED ON SPIRE GRAZING ANGLE MEASUREMENTS [J].
Buendia, Raquel N. ;
Tabibi, Sajad ;
Talpe, Matthieu .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :7135-7138
[6]   Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters Over Land Surfaces [J].
Carreno-Luengo, Hugo ;
Luzi, Guido ;
Crosetto, Michele .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) :107-122
[7]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[8]   Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture [J].
Chew, C. C. ;
Small, E. E. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) :4049-4057
[9]   Description of the UCAR/CU Soil Moisture Product [J].
Chew, Clara ;
Small, Eric .
REMOTE SENSING, 2020, 12 (10)
[10]   Analysis of CYGNSS Data for Soil Moisture Retrieval [J].
Clarizia, Maria Paola ;
Pierdicca, Nazzareno ;
Costantini, Fabiano ;
Floury, Nicolas .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) :2227-2235